

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 1

ASM11
A two-pass absolute macro cross-assembler for the 68HC11

Quick Reference Guide
ASM11 - Copyright © 1998-2018 by Tony Papadimitriou <tonyp@acm.org>

Last Update: October 7, 2018 for ASM11 v9.78

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 2

Command-Line Syntax and Options

ASM11 [- option [...]] [[@] filespec [...]] [> errfile]

¶ option (s) may appear before, in between or after filespec (s).

¶ option (s) specified apply to all files assembled, regardless of command line placement.

¶ Text file(s) containing list(s) of files to be processed may be specified by naming the text file on the

command line, prefixed with a «@» character. These text files may not contain command line options.

¶ filespec (s) may include wildcard characters (?,*). Wildcards are not allowed in filespec (s) that

are prefixed with a «@» but are allowed in filespecs inside @files.

¶ If the file extension for a source filespec is omitted, the extension «.ASM» is assumed (see

description of the ïR.ext option below).

¶ Assembler errors may be redirected to errfile using standard DOS output redirection syntax. This

capability may be used in conjunction with, or as an alternative to the ïE+ option.

¶ Any label can hold a value that is 32-bit long. Even though the CPU cannot understand numbers

larger than 16-bit for data or addressing, the ability to have 32-bit labels allows keeping constants

that are larger than 16-bit for use in later constant calculations. Decimal numbers are signed; the

largest number is +/-2147483647. Hex or binary numbers are unsigned and can go up to the full 32-

bit value (2^
32

-1). For example, a symbol holding the crystal frequency of operation can be expressed

with Hz detail to be used later to derive other constant values (such as cycle-based delays). The 32-bit

capability is NOT available in the DOS version.

¶ The assembler will set the DOS ERRORLEVEL variable when it terminates as indicated:

0 No error, assembly of last file was successful

1 System error (hardware I/O failure, out of disk space, etc.), or - W option failure

2 Error(s) generated (or Escape pressed) during assembly of last file

3 Warning(s) generated during assembly of last file

4 Assembler was not started (help screen displayed, - W option used with success)

1. No file(s) found

Option Default Description

- C[°] - C- Label case sensitivity: + = case sensitive (See also #CASEON/#CASEOFF)
- Dlabel

[:expr]

 Use up to ten times to define symbols either for conditional assembly (e.g.,

IFDEF, IFNDEF, and IF directives) or normal use. Symbols are always

uppercase (regardless of - C option). If they are not followed by a value (or

expression) they assume the value zero. Expression is limited to 19 characters.

Character constants should not contain spaces, and they are converted to

uppercase. Cannot be saved with - W.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 3

- E[°] - E- Generate *.ERR file (one for each file assembled). *.ERR files are not generated

for file(s) that do not contain errors.

- EH[°] - EH+ If ïE+ is in effect, hide (do not display) error messages on screen.

- EXP[°] - EXP- When on, an .EXP file is created containing all symbols defined with an EXP

rather than an EQU pseudo-opcode. The resulting file can then be used as an

#INCLUDE file for other programs. This allows for automatic creation of

include files with exported global symbols.
- F: symb

- F: num

 During assembly, if it finds the given symbol, it prints a ‘Hint’ message showing

the file and line number when that symbol defines or redefines its value. You

can optionally use * anywhere inside the symbol to match all symbols that

include the one characters given. This is very useful for debugging hard to

locate errors of where exactly in the source code a symbol acquired its value.

Alternatively, you can give it a number (either in decimal or hex format the way

the assembler understands numbers). In this case, the ‘Hint’ message will show

the file and line number when that memory address was occupied by either

data or code. This is very useful to help you resolve overlap type errors.

You may use either : or = with this option after the - F.

This option cannot be saved with the ïW switch

- F2[°] - F2- Forces a P&E 16-bit map when in MMU mode. Useful to overcome bugs in

certain P&E products that do not handle MMU addresses correctly.

This option cannot be saved with the ïW switch

- FD[°] - FD- When on, the assembler uses a fake/fixed date (specifically, Jan 1, 2011) for the

internal symbols :YEAR, :MONTH, and :DATE. It does not falsify the date

shown on the listing header, however.

This option is useful to let you always get the same S19 CRC value (shown both

at the end of the listing file, and on the command-line next to each successfully

assembled file), even if you use the :YEAR, :MONTH, and :DATE internal

symbols in your source code, which based on the compilation date of your

program would normally alter the resulting S19 CRC. This would, in turn, make

it more difficult to quickly check if your program produces the same, or a

different binary, since last time you checked. Keeping a record in your source

of the most recent S19 CRC produced with the ïFD option, let’s you know if

something has (perhaps, inadvertently) changed. Without the ïFD option, you

can’t be sure if it’s just the date that changed, or something else.

WARNING: Do NOT include this option in batch or makefiles that compile your

programs automatically, or you risk producing consistently misdated firmware.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 4

It should only be used for manual verification purposes.

It’s not by accident this option cannot be saved with the ïW switch.

- FE[°] - FE- Converts warnings to error messages.

This option cannot be saved with the ïW switch

- FH[°] - FH- Forces hidden macros in listings (#HIDEMACROS) and ignores all

#SHOWMACROS directives.

This option cannot be saved with the ïW switch

- FI [°] - FI - Forces display of included filenames as hints. This option cannot be saved with

the -W switch

- FL[°] - FL- Ignores all #LISTOFF or #NOLIST directives.

This option cannot be saved with the ïW switch

- FM[°] - FM- Ignores all #MAPOFF directives.

This option cannot be saved with the ïW switch

- FQ[°] - FQ- Does not show the assembly progress. Slightly better speed. For use with IDEs

and makefiles.

This option cannot be saved with the ïW switch

- FW[°] - FW- Converts warnings to harmless messages. No error code is returned and

warnings are not counted.

This option cannot be saved with the ïW switch

- FX[°] - FX- Enable macro line number display in FATAL, ERROR, WARNING, MESSAGE, and

HINT directives. The default is off for less cluttered display.

This option cannot be saved with the ïW switch
- I x Define default INCLUDE directory root(s). Relative path files will be tried

relative to this directory (or each directory in the given directory list, searched

from left to right).

Multiple directory roots may be specified in the form of a list. A directory root

list is separated by semi-colons when on Windows, or colons when on Linux.

The * character can be used as a placeholder for the current text of this option

(e.g., when you want to add extra directories either before or after the current

ones without having to specify the whole thing again.)

Since v9.56 two special placeholders may be used in the directory list

specification: ?1 which refers to the path of the current main file, and ?2 which

refers to the path of the current (parent) file. Since the main file is now

searched last, and the current (parent) file’s path is no longer searched by

default, to get the same behavior as was the default in previous versions, you

should run this to convert the current path to the new format but with

compatible behavior: - i.;?1;?2;* - w (for Linux, use - i.:?1:?2: *

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 5

- w)

Since v9.58 FOSSIL source control management users can use

the ?F (case - insensitive) placeholder to specify the root

directory of the repository. This allows for truly

portable installations of your code base.

Since v9.61 users can use the ?A (case - ins ensitive)

placeholder to specify the assumed root directory, which

must contain a filename named _asm_ (lowercase in Linux)

of zero length, even. This allows for truly portable

installations of your code base.

This switch does not affect absolute path file definitions. Both the INCLUDE

and the IF(N)EXISTS directives are affected by this switch.

- L[°] - L+ Create a *.LST file (one for each file assembled).

- LC[°] - LC+ List any conditional directives fully (the directives only, not the contents in

between), even when they are False. This is the new behavior of ASM11 as of

v1.81 but the option is there for those few that liked the old way.
- LLnum - LL19 Define the maximum recognizable Label Length from the legacy 19 characters

up to an absolute maximum of 50 characters. See also the directive

#MAXLABEL.

- LS[°] - LS- Create a *.SYM symbol list (one for each file assembled). May be useful for

debuggers that do not support the P&E map file format.
- LSx - LSS x may be either S (default) for simple SYM file, E for EM11/Shadow11 SYM

format, or N for NoICE SYM format.

- M[°] - M+ Create a *.MAP (one for each file assembled). *.MAP files created may be used

with debuggers that support the P&E source-level map file format.
- MTx - MTP Specifies type of MAP file to be generated (if ïM+ in effect):

- MTA : Generate parsable ASCII map file

- MTP : Generate P&E-style map file

- O[°] - O+ Enables these four warnings: ‘S19 overlap’, ‘RMB overlap’, ‘Violation of

MEMORY directive’, and ‘Violation of VARIABLE directive’.

- P[°] - P+ When on it tells the assembler to stop after Pass 1 if there were any errors.

Provides for faster overall assembly process and less confusion by irrelevant

side errors of Pass 2. Warnings alone never stop in Pass 1.

- Q[°] - Q- Specifies quiet run (no output) when redirecting to an error file (DOS only).

Useful for IDEs that call ASM11 and don’t want to have their display messed up.

Beginning with v2.07, this option can also be used to suppress all output from

#Message directives.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 6

- Rn - R74 Specifies maximum length of S-record files. The length count n includes all

characters in an S-record, including the leading «S» and record type, but not

the CR/LF line terminator. Minimum value is 12 (for one object byte per

record) while maximum is 250 (120 object bytes per record).
- R. ext - R.ASM Specifies the default extension to assume for source files specified on the

command line, which do not directly specify an extension.

- REL[°] - REL+ Allows generation of «BRA/BSR instead of JMP/JSR» optimization warnings

when enabled. (See also OPTRELON/OPTRELOFF)

- RTS[°] - RTS- Allows generation of «JSR followed by RTS» subroutine call optimization

warnings when enabled. (See also OPTRTSON/OPTRTSOFF)

- S[°] - S+ Generate *.S19 object file (one for each file assembled).

- SH[°] - SH- Include dummy «S0» record (header) in object file (only if ïS+).

- S9[°] - S9+ This option can be used to turn off generation of the final S9 record found by

default in all S19 files. This may be useful when assembling code in parts that

will be combined with other S19 files. Since you only need a single S9 record

in the final S19 file, you can use this option to not produce S9 records for all

but one of the files that will be merged together to produce a single object file

with a single S9 record. This option cannot be saved with the ïW switch.

Example: Application and bootloader merging. Assuming you merge the first

with the second (in that order), the bootloader should be assembled as usual,

and the application with the ïS9 option in effect.

- SP[°] - SP- When enabled, the operand part of an instruction is stripped of spaces before

parsing. In this case, possible comments must begin with semi-colon. (See

also SPACESON/SPACESOFF)

- T[°] - T- Makes all errors look like Borland errors (useful to fool certain third-party IDEs).
- Tn - T8 Specifies tab field width to use in *.LST files and object code strings. Tab

characters embedded in the source file are converted to spaces in the object

code strings, and in the listing file such that columns are aligned to 1 + every

nth character.
- Ux Define default OUTPUT directory. If this option is defined, all produced files

will end up in this directory, regardless of where the source file is located.

When this option is undefined (no path given), produced files will end up in the

same directory as the primary source file.

Not available in the DOS version.

- X[°] - X+ Allow recognition of extra, non-68HC11-standard mnemonics in source files.

(See also EXTRAON/EXTRAOFF)

- WRN[°] - WRN+ Enables or disables the display of all warnings. When enabled, only warnings

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 7

that aren’t disabled individually will be generated. When disabled, it overrides

local warning options (such as - REL and - RTS).
- W (none) Write options specified earlier on the command line to the ASM11 executable

(DOS), or ASM11.CFG (Win/Linux). The user-specified options become the

default values used by ASM11 in subsequent invocations. Filespec(s) on the

command line are ignored. Assembly of source files does not take place if this

option is specified.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 8

Source File Pseudo-Opcodes (Pseudo-Instructions)

Pseudo-Op Description

[label] ALIGN expr Case 1. If no label is present, it aligns the current location counter

to be a multiple of the given expression.

Case 2. If a label is present it aligns the value of that label to be a

multiple of the given expression. (In this case, however, it does

nothing to the current location counter.) It issues an error if the

label is not already defined.

COMPATIBILITY ISSUE WITH VERSIONS PRIOR TO 8.30:

Prior to version 8.30, the optional label would be assigned the

current location counter value after the alignment. The label could

not be defined earlier, or you would get an error.

With v8.30 and later, you get an error if the label is not already

defined by the time ALIGN is reached because the new behavior

requires a previous definition so it can align the existing value of

the label. This makes it easy to catch all incompatible ALIGN

statements written for the previous version(s). If you get an error,

simply move the label after the ALIGN statement.
DB string |expr[,...] Define Byte(s). expr may be a constant numeric, a label reference,

an expression, or a string. DB encodes a single byte in the object

file at the current location counter for each expr encountered

(using the LSB of the result) or one byte for each character in

string s.
DS blocksize Define Storage. The assembler’s location counter is incremented

by blocksize . Forward references not allowed. No code is

generated.
DW expr [,...] Define Word(s). expr may be a constant numeric, a label or an

expression. expr is always interpreted as a word (16-bit) quantity,

and is stored in the object file at the current location counter, high

byte followed by low byte.
END [expr] Provided for compatibility. The END directive cannot be used to

terminate assembly; ASM11 always processes the source file to the

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 9

end of file. If expr is specified, the word result is encoded in the

S9 record of the object file.
[Label] ENDM Ends definition of a macro.

The optional label is defined prior to the ENDM processing, which

means it is in the same scope as the rest of the macro.
label DEF expr[,size] Assigns a DEFault value to a label. In other words, this is a

conditional EQU. It only assigns the label if the label is currently

undefined.

LABEL DEF EXPR

is equivalent to:

#IFNDEF LABEL

LABEL EQU EXPR

#ENDIF

Note: The value that appears in the listing file is the actual new

value of the label, which may be different from the value of the

expression, since the assignment may not occur.
label EQU expr[,size] Assigns the value of expr to label . See also EXP and SET

label EXP expr[,size] Assigns the value of expr to label . This is similar to EQU but with

the following difference: Labels defined thus will be included in the

.EXP file as regular SETs . This effectively allows exporting symbols

for use from other source files. It makes it possible to give only

object code to others along with the produced .EXP file so that

they can «link» the object to their source. Found in versions 1.84b+

but will be honored only in 1.85+
FCB string | expr [,...] Form Constant Byte(s). Same as DB.

FCC string | expr [,...] Form Constant Character(s). Same as DB.

FCS string | expr [,...] Form Constant String. Similar to FCC, but it automatically adds a

terminating null (0) byte to the end of the string defined (for ASCIZ

strings).
FDB expr [,...] Form Double Byte(s). Same as DW.

LONG expr [,...] Form 32-bit long word(s). expr may be a constant numeric, a label

or an expression. expr is always interpreted as a 32-bit quantity,

and is stored in the object file at the current location counter in

big-endian order.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 10

Not available in the DOS version.
MacroName MACRO comments

... REMACRO ...
MACRO begins the definition of a new macro.

REMACRO begins the definition of a new macro over a possibly

existing same name macro. Hint: Use #DROP to remove the latest

definition, restoring the previous one, if any.

1. Macros must be defined anytime before they are invoked, and

they can be invoked until the end of the current assembly (for

global macros), end of current file (for local macros), or until a

#DROP directive undefines them, in either global or local case.

2. The body of macros is placed between MACRO and ENDM

keywords, and it can contain any text. All that text is associated

with the specified MacroName, as is. Normal semi-colon

beginning comments are copied also. If you want comments to

appear only in the macro definition but not in each later

expansion of the macro, use double semi-colon (;;) for those

comments to cause them not to be saved along with the macro.

3. By default, macros are invoked using the @MacroName[,parm

separator] syntax (see #MACRO, #@MACRO, #MCF, and #MCF2

directives). Note: You can also use the %macro call syntax (i.e., %

prefix, instead of @) to force all macro counters (:MINDEX,

:INDEX, :LOOP), except for :MACRONEST, for the specific

macro to reset, as if you had dropped and recreated the macro.

4. During invocation, the macro name may be followed by a

comma and any non-alphanumeric single character (if more

characters found, only the first matters). If this parameter

override option is present, then the character right after the

comma will act as a one-time parameter delimiter (just for this

macro call. The #PARMS defined delimiter will not be affected.)

If the character is a space, it does not require yet another space

as field separator between macro name and parameters.

5. The macro may refer to yet undefined labels or macros, as the

code or definitions inside it are not truly parsed until the macro

is actually used, if at all.

6. The macro is expanded on a line-by-line basis. Each line in the

macro body (the text between the macro and endm keywords),

is expanded and then assembled, before the next line of the

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 11

macro body is fetched.

7. Conditionals used inside macros are always local to the current

macro invocation, i.e., you cannot open a condition (like #IFDEF)

inside a macro and then close it (#ENDIF) outside the macro.

8. Local macro names start with the ? symbol (like it is done with

normal local labels).

9. The special local macro named ? (just a single question-mark) is

to be used ad-hoc. This one special macro name is

automatically dropped (without warning) at each new

redefinition. It’s useful for quickly defining a temporary macro

to be used immediately afterwards, and considered discarded

later. For example, an instruction (or series of instructions) with

a complex operand expression can be embedded inside a ?

local macro using as parameter the variable part of the

expression. This can often make your code more readable (and,

editable more easily.)

10. Parameters are passed during invocation in the operand

field separated by commas (or whatever delimiter you have

defined with the #PARMS directive, or the special one-time

parameter separator override.)

11. To use a null parameter, just put two delimiters next to each

other (e.g., @MACRO PARM1,,PARM3). Note: This will work for

any delimiter except for space; two or more consecutive spaces –

outside a string, of course – are seen by the assembler as one

space in the parameter field. Space delimiters can only be used

with sequential parameters without gaps in between (which is

good for the majority of cases, but not all). If you must know,

this is because the assembler trims multiple spaces between

fields to locate the operand field. If spaces were allowed to

separate null parameters, it would also have to count the spaces

from the macro name to the parameter field less one that is

required to separate the two fields and possibly less one more

that could be used with a “space” parameter override, and since

the null parameters could be first in the list of parameters, this

would be very confusing, and hard to get it to work correctly

(especially since you can’t easily count spaces) while also

maintaining the desired code formatting. So, when calling a

macro with non-trailing null parameters, make sure the

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 12

parameter separator is NOT a space (either by default or by

override), or you will get incorrect macro expansions (and,

depending on what the macro does and how it expands, you

may not always get side errors).

12. Macro-local labels must include the string $$$ at least once

anywhere inside their name (except at the very beginning), e.g.

Loop$$$ or Main$$$Loop

13. Parameter text replaces placeholders anywhere within the

body of the macro (label, operation, operand, comment fields)

without regard to context. Parameter placeholders are ~0~ thru

~9~ (where ~0~ is reserved for the macro name itself, and ~1~

thru ~9~ for actual parameters.)

14. ~Cn~ where n is a number from 0 thru 9 is equivalent to

~{n}.{:loop}.1~

15. ~-Cn~ where n is a number from 0 thru 9 is equivalent to

~{n}.{:{n}-:loop+}.1~

16. ~cn~ where n is a number from 0 thru 9 is equivalent to

~{n}.{:mloop}.1~

17. ~-cn~ where n is a number from 0 thru 9 is equivalent to

~{n}.{:{n}-:mloop+}.1~

18. The body of a macro may contain nested embedded

expressions (in any field, even comments) of the form

{<expr>} , like one can do with strings, where <expr> is any

valid expression, normally including some parameter

placeholder(s). Expressions are evaluated last, after expansion of

parameter placeholders but before the ~n.s.l~ type

placeholder (described later).

19. To accommodate indexed mode instruction operands within

any one parameter (provided the macro is called with a non-

comma parameter separator), you can use the following

variations of the placeholders: ~n,~ and ~,n~ (where n is the

number 1 thru 9) and the comma position (either after or before

the number) defines whether we want the part before the index

(excluding the comma), or the index itself (including the

comma), respectively. For example, the instruction lda

~1,~+1~,1~ will expand correctly whether parm ~1~ contains

an index or not. (Using the simpler lda ~1~+1 will not expand

as intended, when used with indexed operands, as the +1 will

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 13

follow the index, and not the offset before the index.) If no index

is within the parameter, ~n,~ is the same as ~n~ while ~,n~ is

null. The assembler will pick anything following a possible

comma (the first one) within a parameter as being an index (so

you could get creative and use the feature for other purposes

also).

20. The special placeholder ~#~ returns either a null string or

the character # if the first parameter’s (~1~) first character is a #

(possibly, indicating immediate mode use). With conditional

assembly (e.g., #IFPARM ~#~) one can treat the ~1~ parameter

differently, assuming immediate mode.

21. Similarly, the placeholder ~#n~ (where n is a number from

1 thru 9, zero also accepted but it is pointless) returns the

parameter part after a possible # sign, if one is present. This

allows getting an immediate mode type parameter in a form

(stripped of the # symbol) that can be used in expressions (for

example, in an #IF directive expression). Note: If no # is inside

the parameter, ~#n~ is the same as ~n~ alone.

22. Since one may often call a macro with a non-comma

delimiter (such as when a parameter contains a comma in an

indexed operand – e.g. 1,x), a possible chained macro call

passing this parameter to another macro, or to self while

looping, must use the same parameter delimiter that was used

to call the original macro, or else the parameter may not be

passed on correctly, or not even as a single parameter. Using

the default parameter separator (a comma) from within a macro

to call another macro (or self) is problematic in those cases. To

solve this problem, two equivalent special placeholders have

been introduced. One is the ASCII code 149 [Å] (e.g., use the

ALT- 7 method in the numeric keypad for entry in Win-PCs), and

the other is the two-character sequence \ , (a backslash

followed by a comma) which should be possible to type in any

editor. Either of these placeholders will be replaced by the same

delimiter as the one used for the most recent macro call (either

by default or by override), unless there is a new explicit one-time

delimiter override (@macro,char call format).

23. The special placeholder ~label~ (case-insensitive) returns

the actual text of a label appearing in the label column of the

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 14

last macro invocation (after expanding possible label embedded

{<expr>}). This can be used with ‘function-like’ macros that

need to set a label to a specific value (without having to pass the

name of the label as a regular parameter). If no label is used in

the same line as the macro invocation, then it returns a null

(empty) string. If, however, no label is used with a chained (or

nested) macro invocation (a macro invocation occurring from

inside a macro) then the text value of ~label~ is not changed

from the original macro’s. This way, a macro can chain to itself

(for looping), or another macro and still have the ~label~

placeholder expand correctly. Note: The length of the actual text

inside ~label~ can be found in the internal variable :label .

24. The special placeholder ~macro~ (case-insensitive) returns

the name of the top-level macro call (useful when used inside

nested or chained macros). For example, if macro A calls macro

B, which then calls macro C, then ~macro~ equals A inside all

three macros.

25. The placeholder ~00~ returns the name of the macro calling

this macro (i.e. the macro one-level above, or the same macro if

calling itself). If at the top-level, ~00~ is the same as ~0~ .

Useful when combining common functionality macros but need

the name of the previous macro calling this one. For example, if

macro A calls macro B, which then calls macro C, then ~00~

equals A (when inside A or B) but ~00~ equals B (when inside C).

26. The special placeholder ~self~ (case-insensitive) returns

the original name of the current macro (useful if you use

#RENAME from within the macro and then need to restore the

actual name the macro had when entered, using #REMACRO).

27. The special placeholder ~text~ (case-insensitive) returns

the current temporary text parameter of the current macro. This

is an temporary placeholder that remembers its macro-unique

value across different macro calls, adding extreme flexibility.

You can also use it as temporary text workspace when

manipulating regular macro parameters. ~text~ can be

changed with MSET, MSWAP, MDEF using zero for the parameter

index. The current length of ~text~ can be found in the

internal variable :TEXT

28. Similarly, the placeholder ~#text~ (case-insensitive) returns

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 15

the part after a possible # symbol(if one is present).

29. The case-insensitive placeholder ~filename~ returns the

current file’s filename including the file extension, while

~basename~ returns the filename without extension, and

~path~ returns the full path with filename and extension. The

variant starting with m (for macro) shows the corresponding

filename for where the macro definition is located

(~mfilename~ etc.), which is not necessarily in the current file.

30. The placeholder ~@~ is an alias for the full list of

placeholders separated by Å (starting from ~1~). Useful if you

want to pass all parameters to another macro. The sequence

produced by ~@~ is:
~1~Å~2~Å~3~Å~4~Å~5~Å~6~Å~7~Å~8~Å~9~

31. The placeholder ~@@~ is an alias for the full list of

placeholders separated by Å but starting from ~2~ . Useful if you

want to pass the remaining parameters to the same macro when

looping (assuming each loop only processes the first parameter,

until that becomes null). The sequence produced by ~@@~ is:
~2~Å~3~Å~4~Å~5~Å~6~Å~7~Å~8~Å~9~

32. Trailing parameter separators (commas by default) and

trailing commas due to macro expansion of null parameters are

automatically removed. This is particularly useful when writing

macros, which replace or enhance single-operand instructions.

One can write the macro so that it does not require a parameter

separator override during invocation, just so it can recognize a

possible indexed operand. Example: LDA ~1~,~2~ will work

even if ~2~ is null, because the now ‘dangling’ comma after ~1~

will be automatically removed, preventing an otherwise expected

syntax error. Similarly, LDA ~1,~+1~,1~,~2~ will work for the

following location pointed to by the expression in parm 1,

regardless of the presence of an index in parm 1, parm 2, or at

all.

33. An alternative to the above method can be achieved (in

most cases) by using the ~[n.p]~ format of the parameter

placeholder (where n is the parameter number, or the case-

insensitive keyword text) to extract the p
th

 byte of the

argument (e.g., if ~1~ contains my_var,sp ~[1.1]~ will return

my_var,sp while ~[1.2]~ will return my_var+1,sp but if

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 16

~1~ contains an immediate value such as #$1234 ~[1. - 1]~

will return #$12 while ~[1. - 2]~ will return #$34 etc. For a 32-

bit example, for parm #$12345678 ~[1.1]~ will return #$12

while ~[1. - 1]~ will return #$56 . The p number can be any

integer (positive or negative) but for immediate mode

parameters the sign matters, and it only works up to 32-bit if

positive (i.e., 1..4), or up to 16-bit if negative (i.e., -1..-2). For

immediate mode only, a number above 4 or below –2 will return

#0 since that is the effective value. This ~[n.p]~ placeholder

makes it particularly easy to deal in a unified way with any

parameter, be it immediate, direct, extended, or indexed mode.

Care has to be taken to use a negative p if working with 16-bit

values, however.

34. You can use the ~n[set]i~ format of the parameter

placeholder to extract the i-th part of the n-th parameter using

the character set [set]. The character set can be given as a string

of characters with or without quotes (square brackets, instead).

Therefore, quotes can also be part of the character set. Example,

~2[,.]3~ will return the 3
rd

 part of the 2
nd

 parameter, where

parts are separated by any instance of comma and dot. (Note:

‘n’ and ‘i’ are optional. If ‘n’ is missing, the value one is assumed.

If ‘i’ is missing, the value one is assumed. Care must be taken

not to allow both to be missing, if the character set contains a

dot because it will then be interpreted as a ~[n.p]~

placeholder, which is processed earlier.) If the character set

contains only a single character, then embedded strings will be

skipped over, otherwise characters even inside strings will be

matched by the characters in the set.

35. You can use the ~n.s.l~ format of the parameter

placeholder (where n is the parameter number, or the case-

insensitive keyword text or label , or a constant string

enclosed in quotes, s is the starting position, or a constant string

to search for, and l is the needed length, or a constant string to

search for but past the s position) to extract only a portion of

the text of the corresponding parameter or constant. The first

dot is required (to disambiguate from ~n~ type parms) even if

nothing follows. The s and l are optional. If s is not entered its

value is assumed to be one, so that ~1.~ is the same as ~1~

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 17

alone. If l is not entered, its value is the length from s to the

end of the parameter (i.e., the remaining string). Note: The

assembler forces s and l to always be within the limits of the

text length. So, specifying a position past the end of the

parameter text will always return the last character. To check for

past-of-text, check against the :nnn length internal symbol for

the specific parameter (e.g., :1 for parm one). If you need to

make n, s , or l the result of an expression you can use {expr}

(for example: ~1.{:loop}.2~).

SPECIAL CASE: When inside a string, the expression will be

evaluated when the string is processed by the assembler, which is

after macro expansion of the various placeholders. This means we

have lost our chance to expand this placeholder. But, we can use

the \ @ instead of quotes for strings inside a macro which contain

~n.s.l~ embedded expressions, and not only those (example:

fcc \ @~{PARM}.{FROM}.{LENGTH}~ \ @ to have it expand

correctly. Because of the \ @ the string does not appear as a string

yet, and the expressions can be calculated during macro expansion.

This way all expressions become simple constants, and the

placeholder can be processed. Finally, the \ @ dummy string

delimiters are turned into single, double, or back quotes,

depending on which of these three doesn’t appear in the string at

all, making the whole thing a proper string.

IMPORTANT COMPATIBILITY ISSUE: A couple or so versions

compiled prior to 2010/09/24 23:00 used @@ instead of \ @. The @@

was an unfortunate selection of dummy quote delimiter and it had

to be replaced with a better one (\ @) even though it meant possibly

causing problems with existing code (hopefully, not that many

macros utilizing this feature were written in the few days the feature

has been available with the wrong delimiter) because it caused

syntax errors in certain cases, e.g. if single character string contained

the @ char (with or without macro parameter expansion), or labels

containing @@ inside their name.

36. Order of placeholder expansion is: ~@~, ~@@~, ~label~ ,

~macro~ , ~00~ , ~self~ , ~text~ , ~#~ , ~#n~ , ~n~ (where n =

0..9, in that order), \ , , and Å, {expression} , ~[n.p]~ ,

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 18

~n.s.l~ , ~n[set]i~ , \ @string \ @, and ~Cn~ variations.

37. During macro invocation, any parameter text may contain

embedded expressions of the form { <expr> } , like one can do

with strings, where <expr> is any expression, possibly including

some parameter placeholder(s), if already inside a macro. This

may be needed in situations where the parameter may be

intrepreted incorrectly while used inside the macro. For

example, if the * (normally used to indicate ‘here’, as in BRA *)

is passed as a parameter to be used inside the macro, it may

have a different value, depending on where it is used. Passing

this parameter as {*} is first ‘expanded’ using the current value,

and then passed in the macro as a simple constant. Note: You

can also do the same expansion from within the macro, making

it worry-free for the user of the macro. For example, one of the

first macro lines can change * to {*} (using MSET) if the specific

parameter is found to have this text.

38. Macros cannot #INCLUDE files, but can ‘chain’ to one.

39. Macros cannot define other macros.

40. Macro-embedded macros are not supported. (Tip: Simple

‘embedded macros’ can be emulated by using any unused

parameters to contain the text of the ‘embedded macro’. The

MSET keyword can be used from within the macro to ‘define’ the

‘embedded macro’ in one or more unused parameters, – each

parameter representing a single line of the ‘embedded macro’ –

then use just the relevant placeholders alone wherever you want

to expand the ‘embedded macro’.)

41. Macros can ‘chain’ to self or other macros (with no

automatic return). This allows, among other things, for creating

loops, making macros very powerful.

42. Macros can temporarily invoke other macros, and then

return back to continue with the original macro. Use the double

@ (@@ or %%) notation when calling a macro from within another

macro if you want to return back (as opposed to chain to

another macro), regardless of macro mode. The default

maximum nesting level is 100 (which should be more than

adequate for most cases) but it can be changed to as high as

10,000 with the directive #MLimit , or as low as zero, which

disables this capability completely. Note: Prefer using macro

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 19

chaining over nested macro calling when feasible, or to get a

looping effect, as it is more efficient both in terms of memory

usage and assembly speed. Tip: To use macros as with some

other assemblers, i.e., without having to type @ prefix, and having

a default nesting (rather than ‘chaining’) behavior, enable the

#MACRO @@ mode (see the relevant section for details) . Macro-

chaining will be altogether disabled, however.

43. To break out of an accidental endless macro loop, press

[ESC] on the command-line.

44. Macro labels may be case-sensitive (depending on

#CaseOn/Off directives) when defined, but are always case-

insensitive when invoked (like normal opcode names). Tip: A

case-sensitive macro definition is important when using the ~0~,

~00~ , and ~macro~ placeholders to have it correctly match a

normal label named the same as the macro, under #CaseOn

mode.

45. Virtually unlimited number of macro definitions (memory

permitting.)

46. Virtually unlimited size of each macro (memory permitting.)

47. Unlimited number of macro invocations (all internal macro

counters are 32-bit).

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 20

MERROR [text]

Combines an #ERROR directive followed immediately by an MEXIT,

which is commonly found in macros. This can only be used inside

macros.
MEXIT [expr] Causes an unconditional early exit from a macro expansion.

(Normally, used inside a conditional block.)

If the optional expression (without any forward references) is

present, its value will be placed in the :MEXIT internal variable. If

the expression is missing, the current value of :MEXIT will not be

changed, allowing for cascaded return values from nested macros.
MSUSPEND

MRESUME

MSUSPEND can be used only from within a macro (usually once, but

since there is no limit, more than once, if needed) to temporarily

suspend the execution of the current macro.

Suspending a macro preserves the current macro state (parms,

counters, etc.) just like nested macros do to protect the parent

macro’s state, but it allows for code outside any macros to be

assembled in place of the MSUSPEND keyword, as if it were part of

the macro (except that it is actually assembled outside the macro,

so none of the macro-only features can be used, and none of the

macro limitations apply – for example, normal use of #INCLUDE is

possible, as well as definition of new macros, etc.)

This makes it much easier to create nestable macros that emulate

block structures, than by using two separate macros (one for block

begin, and one for block end) and trying to keep them

synchronized.

Note: When a nested macro is suspended, all macros leading to the

currently executing macro are indirectly suspended as a side effect.

MRESUME can be used only from outside any macros to resume

execution of the most recently suspended macro.

You can have several macros in the suspended state, but they can

only be resumed in a LIFO order (i.e., stack order). This allows for

the creation of nested blocks (like WHILE, FOR, IF, REPEAT, etc.)

commonly found in higher-level languages.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 21

The recursion limit (see #MLimit) counts suspended macros also,

because these are stacked just like when doing normal nested

macro calls.

This MSUSPEND/MRESUME feature makes it particularly easy to

replace pairs of macros (like FOR … ENDFOR) that normally appear

right before and after a code section to create a block structure,

with a single macro that does all the required work and simply

allows (via the use of the keyword MSUSPEND) the inclusion of any

arbitrary code in between (i.e., between the macro call and the

MRESUME keyword).

Simple nested example (counts lines of intermediate source code,

and issues warning if optional limit is exceeded):

 org *

CountLines macro [Limit][,Description]

 mset 2, ~@ @~

 #temp :lineno+1

 msuspend

 #temp :lineno - :temp

 #Message Section~2~ spans {:temp} lines

 #ifnb ~1~

 #if :temp > ~1~

 #Warning Too many lines (>{~1~})

 #endif

 #endif

 endm

; To use:

 @CountLines ,OUTER

 nop

 @CountLines ,INNER

 nop

 nop

 mresume

 nop

 mresume

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 22

MSTOP [#ALL#]

MSTOP [text]
When used inside a macro, it causes an unconditional early

termination of all currently executing macros, and regardless of

nesting level. (Normally, used inside a conditional block.)

When used outside a macro, it causes the most recent suspended

macro to stop being suspended. When the optional #ALL#

parameter is used, then all nested suspended macros are stopped

(become no longer suspended).
MSTR index[,index]* MSTR tests each one of the specified indexed macro parameter text

for being a string, and, if not a string, it changes it to one using the

appropriate delimiters based on the contents of the parameter text.

It is equivalent to the following sequence (but repeated for each

specified index n):

#IFPARM ~ n. ~

 #IFNOSTR ~ n. ~

 MSET n, \ @~n. ~\ @

 #ENDIF

#ENDIF

MSET index[,text]

MSET #

MSET #ôcharsetô

MDEF index[,text]

MSWAP index,index

MDEL index

MTRIM index[,index]*

MSET changes the current macro’s index -ed parameter to the text

that follows, or to null if no text follows. There are many potential

uses for this capability (such as using the macro parameters as

temporary text variables.) It is particularly useful, however, with

macro loops using the MTOP command.

A second variation of MSET (added in v8.90) allows to unite all

parameters into one, and optionally split back into as many

parameters using a user-defined character set given as string. For

example, MSET # will unite all current macro parameters into just

one (using the currently active macro parameter separator.) MSET

#’abc’ will first unite alls parms into one and then split into separate

parms for every occurrence of characters a, b, or c, while skipping

over parenthesized parts, and strings. If the string after # has just

one character, this will be eliminated (as it will be treated as the

new parm separator.) If it has more than one character, the parm

will be split right before the character, and the found character will

be the first character of the next parm. This feature allows you to

re-arrange the parameters based on a different separator.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 23

MDEF is similar to MSET but it only changes the text of the

parameter if the parameter is currently null. This is the same as

using MSET within an #IFNOPARM conditional block. It’s useful for

setting default macro parameters (normally, at the top of the

macro).

MSWAP simply swaps the text of any two parameters. (Swapping a

parameter with itself has no effect.)

As an example for MSWAP, in macros with multiple single operands,

you can use it to bring the working operand always in, say, ~1~ ,

which may be simpler to use than the equivalent ~{:loop}.~

from inside a loop.

MDEL deletes the current macro’s index -ed parameter. Note: This

is different that using MSET without the text parameter to delete

the content of a parameter placeholder. MDEL deletes the actual

parameter location, which means all following parameters will

move down one location. For example, MDEL 1, will move ~2~ to

~1~ , ~3~ to ~2~ , and so on, for all parameters that follow.

MTRIM will trim all non-string spaces from the respective

parameter(s).

Note: In all cases, index is any expression that doesn’t contain

forward references.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 24

MREQ ind[,ind]*[:errmsg] Checks each of the specified macro parameters (separated with

commas) for null value (empty). If the parameter is null, an

appropriate internal error message is displayed, and the macro

expansion is terminated at that point.

If the optional errmsg parameter is present (which must follow a

colon), this error message will be displayed instead of the default

error message.

This can be used to specify which macro parameters are required,

and print an error message, if these parameters are null. If more

than one of the specified parameters are null, the message will

repeat for each one of them.

You may use MREQ multiple times, perhaps, once for each

parameter, so that you can have a unique error displayed for each

parameter.

Note: ind is any expression that doesn’t contain forward references.

errmsg is any text. If ind contains an internal variable (such as

:LOOP), it must be enclosed in { ... } because the colon is also

used as the beginning of the errmsg .
MTOP [limit expr] Causes an immediate unconditional jump to the top line of the

current macro, while incrementing the :LOOP counter. It can be

used either alone or within conditionals. The advantage to using

MTOP over @~0~ (a macro call to self) is that whatever parameters

were passed in the macro do not need to be specified again as the

macro is never exited. Also, no counters are incremented, except

for :LOOP. This means, however, that $$$ based labels (which are

unique to a macro invocation) are still in the same scope as before

the MTOP command since no new macro has been invoked.

If the optional limiting expression (containing only non-forward

references) is present, its value will be compared to the :LOOP

counter and MTOP will execute only if the current value of :LOOP is

less than the value of the expression. Example (shift word right one

or more times):

lsr.w macro Address[,Count]

 mdef 2,1 ;default Count=1

 lsr ~1~

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 25

 ror ~1,~+1~,1~

 mtop ~2~

 endm

As another example, an expression like the one that follows can be

used to loop while the next parameter is not null:
mtop :loop+:{:loop+1}

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 26

MDO [start expr]

MLOOP [limit expr]
MDO and MLOOP work together to form a local DO ... LOOP

inside a macro. Note: MDO and MLOOP cannot be nested because

MLOOP always matches the most recent MDO of the current macro.

MDO simply marks the current line (i.e., the line containing the MDO

keyword) as the beginning of a local loop, and (re)initializes the

:MLOOP counter to one (1), or to the value of the non-forward

expression, if one is present.

MLOOP causes an immediate unconditional jump to the line

following the most recent MDO keyword, while incrementing the

:MLOOP counter (not to be confused with the :MACROLOOP or

:LOOP counter). If no MDO was used up to this point in the macro,

MLOOP jumps to the top of the current macro (just like MTOP

would), but it only affects the :MLOOP counter (whereas MTOP only

affects the :LOOP counter).

If the optional limiting expression (containing only non-forward

references) is present, its value will be compared to the :MLOOP

counter and MLOOP will execute only if the current value of :MLOOP

is less than the value of the expression. Example (multi-byte

addition):

add.m macro Op1,Op2,Ans[,Size]

 mdef 4,1 ;default size = 1

 psha

 mdo

 ldaa ~1,~+{~4~ - :mloop}~,1~

#if :mloop = 1

 adda ~2,~+{~4~ - :mloop}~,2~

#else

 adca ~2,~+{~4~ - :mloop}~,2~

#endif

 staa ~3,~+{~4~ - :mloop}~,3~

 mloop ~4~

 pula

 endm

As another example, an expression like the one that follows can be

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 27

used to loop while the next parameter is not null:
mloop :mloop+:{:mloop+1}

label NEXP symbol[,expr] Assigns the current value of symbol to label as if with EXP.

Then, it increments the value of symbol by one (as if with SET) or,

if the optional expression is present, by the value of that

expression. Useful for defining a series of symbols based on a

common starting value. Note: symbol is a single label and not an

expression. See also NEXT, SETN

[label] NEXT symbol[,expr] Assigns the current value of symbol to label as if with EQU.

Then, it increments the value of symbol by one (as if with SET) or,

if the optional expression is present, by the value of that

expression. Useful for defining a series of symbols based on a

common starting value. Note: symbol is a single label and not an

expression.

Since v9.41, a special case of NEXT is when the label to the left is

missing. In that case, NEXT is used as an anonymous placeholder

that simply increments the symbol to the right, as usual.

See also NEXP, SETN

ORG [[s19_expr],]expr Sets the assembler’s location counter for the active segment. Code

generated after this directive will be assembled starting at the

location specified by expr .

If s19_expr is present, then the S19 file runs with an offset from

the actual location counter. This allows for different segments of

code to be assembled at the same physical address but, obviously,

be placed in different addresses in the loadable S19 file.

The current offset is available in the :OFFSET internal symbol.

To cancel any offsets without changing the current position, simply

give ORG followed by a single comma without any expressions.
label PROC

[label] ENDP
PROC first advances the @@ local label counter, and then it assigns

the value of the program counter (*) to label . This allows using

symbols locally for a specific section of code (e.g., a subroutine).

The symbol to the left of PROC is always in the new scope. The

name of the symbol is stored in the ~procname~ macro

placeholder. Each time PROC (or #PROC) is encountered, the

assembler increments an internal 32-bit local symbol counter.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 28

Symbols containing @@ anywhere inside their name (except at the

very beginning) at least once (for example, Loop@@) will have the

@@ part replaced with a special control character (different from

what is used with macro local $$$) and the current value of the

internal local symbol counter (similar to $$$ with macro local

labels).

Up until a PROC or #PROC is encountered in the program, the @@ is

not treated specially (i.e., the @@ is not converted to a special

number). This makes this feature compatible with code written

prior to its introduction. The current value of the corresponding

internal counter can be found in the internal symbol :PROC while

the maximum proc number can be found in the internal symbol
:MAXPROC

ENDP is optional and marks the end of the corresponding PROC.

Its use allows one to nest procs (e.g., for code coherency as when

keeping a subroutine close to the actual point of use). The optional

label is defined prior to the ENDP processing, which means it is in

the same scope as the rest of the proc.

See also #PROC and #ENDP

RMB blocksize Reserve Memory Byte(s). Same as DS.

label SET expr[,size] Assigns the value of expr to label even if label is already

defined with a different value.

This is similar to EQU but allows making multiple re-definitions.

The value set will be used until another SET pseudo-instruction or

to the end of the assembly process.

Warning: Careless, or simply wrong use of this directive can lead to

multiple side errors or warnings (please note this is a two-pass

assembler). Using a forward SET defined symbol may lead to

problems, as the value used will be the one from the last SET

definition, which is not necessarily the one we want.

Correct behavior is guaranteed if any symbols re-defined with SET

are used only after each new re-definition, otherwise, the first

reference in Pass 2 will use the value from the last re-definition in

Pass 1.

Example of wrong use:
1. lda #Value ;we expect 123, actual is 234

2. Value equ 123

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 29

 ...

3. lda #Value ; we expect 234, actual is 123

4. Value set 234

Value in line 1 will be 234 (the last known value from Pass 1) while

Value in line 3 will be 123 (most recent value in current Pass 2).

Example of correct use:
1. Value equ 123

2. lda #Value ;we expect 123, actual is 123

 ...

3. Value set 234

4. lda #Value ;we expect 234, actual is 234

See also EXP and EQU

label SETN symbol[,expr] Assigns the current value of symbol to label as if with SET.

Then, it increments the value of symbol by one (as if with SET) or,

if the optional expression is present, by the value of that

expression. Useful for (re-)defining a series of symbols based on a

common starting value. Note: symbol is a single label and not an

expression. See also NEXP, NEXT

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 30

Source File Processing Directives

¶ All processing directives must be prefixed with a $ or # character. ASM11 will recognize either

character as the start of a processing directive.

¶ If a directive has a corresponding command-line option, the directive in the source file will override

the command line directive at the point in which the source file directive is encountered.

¶ [text] will be trimmed of duplicate spaces. To have more than one consecutive space display, use

the Alt-255 character, as many times as needed.

Directive Description

#AIS [symbol] #AIS checks the current value of the :SP internal variable against

the most recent AIS instruction’s value, and issues a warning if the

two numbers do NOT differ by the exact value in the symbol (note:

a plain symbol, not an expression), indicating a possible stack frame

definition error (assuming correct placement of the relevant

directives).

The warning also shows the correct AIS instruction that is required

to correct the problem.

This directive makes it very easy to correct the numeric value in

GETX/GETY instructions to match the following stack

frame definition (normally made using the internal ::

symbol in the various #SPAUTO modes, and the

next /setn method for defining records/structures.)

This is useful to prevent having to define the stack frame

before the GETX/GETY instruction using a one-based

starting offset just so you can use a label with

GETX/GETY and then having to re-define it for dynamic

assignment of offsets based on the current :SP .

If, however, a symbol is not specified, then this directive simply

resets the value of the :AIS internal symbol to the current :SP

value difference. This can be used when no actual AIS instruction

is used (for example, a series of PSHx instructions are used, but we

want to use the :AIS variable later on to de-allocate any local

variables.)

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 31

The associated :AIS symbol returns the difference between the

current :SP and the value saved during the most recent #AIS

directive. This can be used to de-allocate just the number of stack

bytes that are still left on the stack between the two points in your

source. This is only meant for use in #SPAUTO modes, which

automatically adjusts the current value of the :SP internal symbol.

#PUSH and #PULL will save/restore the value of this setting.
#CASEOFF When #CASEOFF is in effect, all symbol references that follow are

converted to uppercase internally before they are searched for or

placed in the symbol table. (Debug and DEBUG are the same

symbol.)

Equivalent to the ïC- command line option.
#CASEON When #CASEON is in effect, symbol references are NOT internally

converted to uppercase before they are searched for or placed in

the symbol table. (Debug and DEBUG are two different symbols.)

Equivalent to the ïC+ command line option.

#CRC expr The two CRCs (user and S19) maintained by the assembler are 16-

bit each, and they are updated only during PASS2 by each

produced user code/data byte that is put into the S19 file. The

starting CRC value for both CRCs is zero.

With this directive you can alter the user CRC value at any time

(either before the very first byte of code/data to produce a

different CRC for the same firmware, or several times in between to

skip certain volatile sections, for example).

The computed CRCs are available by accessing the internal symbols

:CRC and :S19CRC

The formula used for the 16-bit CRC calculation is very simple to be

easily implemented even in tiny bootloaders:

16BitCRC := 16BitCRC + 16BitAddress*8BitDa ta

:S19CRC is mostly useful with the END directive (END :S19CRC) as it is

not affected by the #CRC directive. An S19 loader can check the

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 32

overall integrity of the S19 file.

:CRC, on the other hand, is mostly useful for checking code after it

has been loaded into the MCU, at each reset, for example.

Please note that for both CRCs all $00 bytes do not affect the

calculation while, for the user CRC only (:CRC), all $FF bytes are

intentionally skipped. This allows for the CRC in an S19 file (which

does not necessarily fill a contiguous block of memory) to match

the CRC computed by the MCU over a complete block of memory

without the MCU bootloader knowing in advance the actual

addresses used within that block, provided any unused bytes are in

the erased state.

As a side effect, however, any $00->$FF or $FF->$00 alterations in

the file cannot be detected with the user CRC.
#CYCLES [expr] First, the optional expression is calculated using the current values

of any internal symbols.

Then, the current value of : CYCLES is copied to :OCYCLES.

Finally, the internal:CYCLES counter is set to zero (if the optional

expression is missing), or to any arbitrary value (the result of the

expression).

This directive can also be used inside macros to restore the cycle

counter of surrounding code, if the macro cycles should be counted

in a special way, or not at all.
#DATA Activation of the DATA segment. Default starting value is $103F

(the CONFIG register).
#DROP macro[,macro]* Undefines one or more macros. If a macro is not currently defined,

a warning will be issued (to protect from possible typing errors).

To drop all macros (global and local) with a single command, use *

(asterisk) in place of the macro name. There is no warning if no

macros found.

To drop all local macros (for the current file only) with a single

command, use ?* (question mark followed by asterisk) in place of

the macro name. There is no warning if no local macros found.

If used from inside a macro, and that macro is dropped, the macro

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 33

will terminate at that point. The rest of the macro will not be

processed.

The special macro named ? (just a single question-mark) is to be

used ad-hoc, and it is automatically dropped (without warning) at

each new redefinition. You may also drop it with #DROP but only

need to do so if you want to force errors in later use of the macro,

so you can easily locate them.

You cannot drop macros that are currently active above the current

macro level (e.g. nested macros leading to current one.)
#EEPROM Activation of the EEPROM segment. Default starting value is

$B600.
#EJECT See #PAGE
#ELSE [IFxxx] When used in conjunction with conditional assembly directives

(#IF, #IF[N]DEF, $IF[N]Z, #IFMAIN, #IFINCLUDED ,

etc.), code following the #ELSE directive is assembled if the

conditional it is paired with evaluates to a not-true result.

Optionally, you can follow with another IF directive (of any kind) to

create a ‘chained’ condition check, like:
#IF é #ELSE IF é #ELSE IF é #ELSE é #ENDIF

The optional IF should not start with a # or $ directive symbol but it

should be separated with at least one space.
#ENDIF Marks the end of a conditional-assembly block.

Conditional assembly statements may be nested if they are

properly blocked with #ENDIF directives.

#ERROR [text] When encountered in the source, the assembler issues a error

message in the same form as internally-generated errors, using the

text specified, prefixed with «USER: »
#EXIT [expr] If no expression is present, it immediately exits the current

#INCLUDE file. (Does nothing if used inside a main file.)

If the optional expression is present (normally though, this might

be just a single label), the exit occurs only if the expression is

defined (as if when checked with #IFDEF).

This can be used in the top of #INCLUDE files, like so:

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 34

 #EXIT _COMMON_

COMMON

In this example, the first time this file is included, the symbol

COMMON is undefined, so the #EXIT is ignored. Consequent

times this file is included, it exits upon hitting the #EXIT directive.

Note: Due to how #INCLUDE files are counted internally, and there

being a limit on how many total files you can #INCLUDE, it’s better

when working with larger projects that you do not #INCLUDE a file

at all when already processed, rather than #INCLUDE it and #EXIT

it. (See also #USES)
#EXTRAOFF Disables recognition of ASM11’s extended instruction set for

source lines that follow this directive.

Equivalent to the ïX- command line option.
#EXTRAON Enables recognition of ASM11’s extended instruction set for source

lines that follow this directive.

Equivalent to the ïX+ command line option.
#EXPORT symbol[,symbol]* Export one or more symbols (as if with EXP). File-local symbols

cannot be exported. If a symbol is not currently defined, a warning

will be issued.
#FATAL [text] Similar to the #ERROR directive, but generates an assembler fatal

error message and terminates the current file assembly (processing

will continue with possible further files in the command line

supplied file list).
#HOMEDIR [path] Makes the specified path the current home directory. Although

this cannot affect where any output files will go, it does make a

difference on where any following relative #INCLUDE files will be

searched. Relative file path specifications will now be relative to

the directory specified by the #HOMEDIR directive, including any

relative #INCLUDE references in nested include files.

If [path] is missing, the original main file path is restored.
#IF expr1 cond expr2 Evaluates expr1 and expr2 (which may be any valid ASM11

expression) and compares them using the specified cond

conditional operator. If the condition is true, the code following

the #IF operator is assembled, up to its matching #ELSE or

#ENDIF directive.

Cond may be any one of: < <= = >= > <>

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 35

The condition is always evaluated using unsigned arithmetic.

If a symbol referenced in expr1 or expr2 is not defined, the

statement will always evaluate as false. At least one space must

embrace cond on each side.
#IF [N] DEF expr [ƅexpr]* Attempts to evaluate expr , and if successful, assembles the code

that follows, up to the matching #ELSE or #ENDIF directive. This

directive is used to test if a specified symbol has been defined.

Symbol(s) referenced in expr must be defined before the directive

for the result to evaluate true (e.g., forward references will evaluate

as false). #IFDEF without an expr following will always evaluate to

False. You can have multiple unrelated expressions separated by

ASCII character 179 (looks like a pipe symbol) which are ORed

(#IFDEF) or ANDed (#IF NDEF) to decide whether the result will be

true or false.
#IFEXISTS fpath It checks for the existence of the file specified by fpath (using the

same rules as those used for #INCLUDE directives) and assembles

the code that follows if the specified fpath exists.
#IFINCLUDED Assembles the code which follows if the file containing this

directive is a file used in an INCLUDE directive of a higher-level file

(regardless of nesting level). See also #IFMAIN

#IFMAIN Assembles the code that follows if the file containing this directive

is the main (primary) file being assembled. See also

#IFINCLUDED.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 36

#IFMDEF macro

#IFNOMDEF macro
#IFMDEF checks if the specified macro exists, and if so, assembles

the code that follows, up to the matching #ELSE or #ENDIF

directive. This directive is used to test if the specified macro has

been defined. #IFNOMDEF does the opposite check.

#IFPARM text [= text]

#IFPARM text [== text]

#IFNOPARM text [= text]

#IFNOPARM text [== text]

Aliases:

#IFB same as #IFNOPARM

#IFNB same as #IFPARM

Normally used inside macros. If text is non-blank, assembles the

code that follows, up to the matching #ELSE or #ENDIF directive.

This directive is used to test if a specified macro parameter has

been defined. #IFPARM without text following (after macro

expansion) will always evaluate to False. text is usually a

parameter placeholder (e.g., ~1~).

You can also make a case-insensitive (using the = sign) or case-

sensitive (using the == sign) comparison of the parameter to a

specific text string (with or without quotes, depending on your

intent) by separating the two text strings with an ‘equals’ (=), or

double-equals (==) sign, depending on the desired case-sensitivity.

For example,
#IF PARM ~1~ = *

tests if parameter one is a plain asterisk (normally used to indicate

the current location pointer.)

#IFNOPARM performs the opposite test.
#IFSPAUTO Assembles the code that follows, up to the matching #ELSE or

#ENDIF directive, if the assembler is currently in #SPAUTO

(automatic SP adjustment) mode. See also #SPAUTO #SP

#IFSTR text

#IFNOSTR text
Normally used inside a macro. If text is a quoted string, assembles

the code that follows, up to the matching #ELSE or #ENDIF

directive. This directive is used to test if a specified macro

parameter is a string. #IFSTR without text following (after macro

expansion) will always evaluate to False. text is usually a

parameter placeholder (e.g., ~1~).

#IFNOSTR performs the opposite test.

#IFNUM text

#IFNONUM text
Normally used inside a macro. If text represents a number,

assembles the code that follows, up to the matching #ELSE or

#ENDIF directive. This directive is used to test if a specified macro

parameter is a number. #IFNUM without text following (after

macro expansion) will always evaluate to False. text is usually a

parameter placeholder (e.g., ~1~).

#IFNONUM performs the opposite test.

#INCLUDE fpath Includes the specified fpath file in the assembly stream, as if the

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 37

#USES fpath contents of the file were physically present in the source at the

point where the #INCLUDE directive is encountered. #INCLUDEôs

may be nested, up to 100 or 125 levels (the main source file counts

as one level). Relative fpath specifications are always referenced

to the directory in which the main source file resides, including any

relative #INCLUDE fpath references in nested include files.

#USES is an alternative, slightly different method to include a file.

It will #INCLUDE the file specified (using the same file-finding rules

as #INCLUDE) but only if the same file path has not been included

(via #INCLUDE or #USES) at least once, already. #USES is useful

for creating #INCLUDE file dependencies (normally, from a higher

level to a lower level – e.g., an analog temperature sensor driver

module #USES the A/D driver module, but not the other way

around). This allows directly #USING (an alias for #USES) only the

module of interest in your application, and it should take care to

use whatever other modules it requires (in a recursive sort of way).

If another included module in the same application #USES the

same lower-level module, it will not be included a second time.

This is similar to the common

#IFNDEF _MODULE_

MODULE

 ...your module code goes here...

#ENDIF

technique used to prevent multiple inclusions of the same file, but

only have it included the first time it is referenced. Normally, the

#IFNDEF é #ENDIF block is found inside the file, meaning the

assembler must enter the file before it ‘knows’ it doesn’t need it.

The advantage with #USES, however, is (1) that you do not need a

specific symbol definition for each file, and (2) you never enter an

already included file (which would use up a sometimes precious file

count towards the maximum number of #INCLUDE files.)

Bi-directional, or circular co-dependencies (e.g., file A depends on

file B, while file B depends on A) are possible in some cases, and

then they require some extra attention in the respective files’

internal organization, or it could not work as you might have

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 38

expected, and leave you confused by ‘spurious’ errors. In general

though, you should try to avoid them.

Also, you cannot use #USES in place of #INCLUDE for modules

that must be included multiple times (e.g., including the same SCI

driver module, once for each hardware SCI available), although you

could use #USES to include a file that itself does #INCLUDE the

same file multiple times.

Note: The assembler will only generate a standard error (not an

assembly-terminating fatal error) if a file specified in a #INCLUDE

(or #USES) directive is not found. The #IFEXISTS and

#IFNEXISTS directives may be used in conjunction with #FATAL if

termination of assembly is desired under such conditions.
#IFNDEF expr Evaluates expr and assembles the code that follows if the

expression could NOT be evaluated, usually as the result of a

reference to an undefined symbol. This directive is the functional

opposite of the #IFDEF directive.

#IFNEXISTS fpath The opposite of #IFEXISTS ; code following this directive is

assembled if the specified fpath does NOT exist. As of version

1.61, the -Ix path will also be searched to determine whether a file

exists or not.
#IFNZ expr Evaluates expr and assembles the code that follows if the

expression evaluates to a non-zero value. #IFNZ always evaluates

to false if expr references undefined or forward-defined symbols.
#IFZ expr Evaluates expr and assembles the code that follows if the

expression is equal to zero. #IFZ always evaluates to false if expr

references undefined or forward-defined symbols.
#IFTOS expr If top-of-stack evaluates expr +:SP (+:SP is implied) and

assembles the code that follows if the expression is equal to one

(when in #SP[AUTO] modes), or zero (when in #SP1 mode), i.e.,

expression points to top-of-stack in all modes. #IFTOS always

evaluates to false if expr references undefined or forward-defined

symbols.

Useful mostly in #SP[AUTO] modes.
#LISTOFF

#NOLIST

Turns off generation of source and object data in the *.LST file for

all lines which follow this directive. Useful for excluding the

contents of #INCLUDE files in the *.LST file. This directive is not

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 39

shown in the *.LST file.
#LISTON

#LIST
Enables generation of source and object data in the *.LST file for

the source code following this directive. Has no effect if list file

generation is disabled (- L- command line option in effect). This

directive is not shown in the *.LST file if the listing was turned off

just prior to it.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 40

#MACRO [@@]

#MCF [@@]

#MCF2 [@@]

#@MACRO [@@]

#MACRO tells the assembler to treat unknown assembly language

operations as possible macros. Normal instructions (including the

built-in macro instructions) have priority over macros, so macros

named the same as active built-in operations can only be called

with the @ prefix.

In effect, when in this mode, the assembler automatically adds the

@ symbol if an unknown operation is found to be a macro name. In

this mode, one can invoke macros either way, with or without the @

prefix, but instructions have priority over same name macros.

Note: To avoid problems, all macros should internally use the

@macro syntax so they can be properly expanded regardless of

mode.

#MCF (“Macros Come First”) is similar to #MACRO (i.e., no @ prefix is

required for calling macros) but in this case macros have priority

over same-name instructions but only when called from outside

any macros. Macro chaining (i.e., jumping to a macro from inside a

macro) is still only possible using the @ prefix when a macro name

collides with an active instruction name. So, using this mode is

100% compatible with macros written before this mode was

introduced and does not require editing macros to use the

!instruction format mentioned next.

If you’re in #MCF mode, and you want to temporarily give priority

to a real instruction (without changing to #Macro or #@Macro

mode), you must prefix it with a ! (exclamation point.)

The #MCF mode is most useful when you want to override the

functionality of any internal instruction with something more

involved (a macro), as for example, when porting code from

another CPU with similar instructions but different functionality

(e.g. LDX in 68HC11 is a word operation, and it may compile

without errors in the 68HC[S]08 but with incorrect operation as it

will not affect the full HX register).

I do not recommend casual use of this mode as it may make the

source code totally misleading (if instructions which are now

possibly macros aren’t what they seem but something completely

different.)

#MCF2 is almost the same as #MCF but it doesn’t have the

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 41

restriction where macros named the same as instructions require

the @macro format from within macros. This is the most

‘dangerous’ of all available modes, since it is always the macro

which has precedence. If you need to be certain you use a real

instruction and not a possible macro with the same name, you

MUST use the !instruction format.

#@MACRO turns off this option. This is the default setting when a

new assembly begins. In this mode, you can only invoke macros

with the @ prefix. This is the recommended mode for most normal

applications.

Hint: The macro is normally invoked as an instruction, which means

its name must appear after column one. Regardless of the current

macro mode, when a macro call is made using the default @macro

(or %macro) format, its invocation can start even in column one,

since it can’t ever be a symbol that starts with one of these two

characters [@ and %].

Note: If the optional @@ parameter is provided to any of the four

directives mentioned above, macro chaining is effectively disabled,

and any otherwise ‘chained’ calls now become truly nested calls (as

if the @@macro format is used at all times a macro is called).

WARNING: Macros written based on the default ‘chain’ behavior

may no longer operate the same (since non-@@ macro calls include

an implied following mexit). To simulate the same behavior, when

the @@ option is active, make sure you add an MEXIT command

after each otherwise ‘chained’ macro call. By the way, this will

make the macro work the same way regardless of the @@ sub-mode

being in effect or not.

When the @@ sub-mode is in effect, you still need to observe the

various calling methods based on which of the three macro modes

you’re in. To cancel the @@ sub-mode, simply give any of these

directives without it.
#MAXLABEL number Define the maximum recognizable Label Length from the legacy 19

characters up to an absolute maximum of 50 characters. See also

the command-line option - LL .

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 42

#PUSH and #PULL will save/restore the value of this setting.
#MEXPORT macro[,macro]* Export one or more macros in the EXP file (if one is produced).

File-local macros cannot be exported. If a macro is not currently

defined, a warning will be issued.
#MLIMIT [expr] Sets the maximum macro nesting limit to the value of the optional

expression.

If no expression follows the default value of 100 is used. This value

should be more than adequate for nearly all cases.

Minimum value is zero (which practically disables macro call

nesting). Maximum is 10000 (ten thousand).

Note: Macro nesting uses extra memory during assembly. You

should avoid using macro nesting if the same functionality can be

achieved by using macro chaining, or even the most efficient simple

looping (MTOP instruction).
#MLISTOFF

#NOMLIST

Turns off generation of source and object data in the *.LST file for

all macro body lines which follow this directive. Useful for

excluding the body of macros in the *.LST file.
#MLISTON

#MLIST
Enables generation of source and object data in the *.LST file for all

macro body lines following this directive. Has no effect if list file

generation is disabled (- L- command line option in effect). This is

the default setting.
#HIDEMACROS

#SHOWMACROS
Note: These two directives work only when the ïLC- (List

Conditionals = OFF) command-line option is in effect.

#HideMacros treats all macro-specific keywords (the @macro call,

mexit , mtop , endm) the same as ‘conditional’ directives only for

the purposes of display in the listing. So, when ïLC- is in effect,

they won’t appear in the *.LS T file at all. This leaves only the

expanded macro contents. When this directive is in effect, it is no

longer possible to know where a macro begins or ends, or how

many times it iterates itself.

Note: The corresponding macro definitions will not display at all,

regardless of the ïLC mode.

#ShowMacros (re-)enables normal display. The default setting

when a new assemby begins is #SHOWMACROS.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 43

#PUSH and #PULL will save/restore the value of this setting.
#MAPOFF Suppresses generation of source-line information in the *.MAP file

for the code following this directive. Symbols which are defined

following this directive are still included in the *.MAP file.
#MAPON Enables generation of source-line information in the *.MAP file for

the code following this directive. #MAPON is the default state when

assembly is started when map file generation is enabled (- M+

command line option).
#MEMORY addr1 [addr2]

#MEMORY #OFF#

Maps a memory location (or range, if addr2 is also supplied) of

object code and/or data areas as valid. Use multiple directives to

specify additional ranges. Any code or data that falls outside the

given range(s) will produce a warning (if the - O option is enabled)

for each violating byte. Very useful for segmented memory

devices, etc. Addr1 and addr2 may be specified in any order. The

range defined will always be between the smaller and the higher

values.

The special keyword #OFF# removes all current definitions.

See also #VARIABLE

#MESSAGE [text]

#HINT [text]
Displays text on screen during the first pass of assembly when

this directive is encountered in the source. Messages or hints are

not written to the error file. They are meant to inform the user of

options used or conditional paths taken.

#HINT cannot be masked with the ïQ+ option.
#NOWARN Turns warnings off. Equivalent to the ïWRN- command line option.

See also #WARN

#OPTRELOFF Disable «BRA/BSR instead of JMP/JSR» optimization warnings.

Equivalent to the ïREL- command line option.
#OPTRELON Enable warning generation when an absolute branch or subroutine

call (JMP or JSR) is encountered that could be successfully

implemented using the relative form of the same instruction (BRA

or BSR). This option is on by default.

Equivalent to the ïREL+ command line option.
#OPTRTSOFF Disable RTS-after-JSR/BSR optimization warning (default).

Equivalent to the ïRTS- command line option.
#OPTRTSON Enable warning generation when a subroutine call (JSR or BSR) is

immediately followed by a RTS. This option is off by default.

Command-line option - RTS+ does the same thing.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 44

#PARMS [char|SPACE] Allows changing the delimiter used to separate macro parameters

when invoking the macro. If char is defined the new delimiter will

be the same as char . If there is no character following the

directive, the default parameter delimiter (a comma) will be used.

To use a regular space as a parameter separator, the [char] part

of the command should be the special keyword SPACE (case-

insensitive).

#PUSH and #PULL will save/restore the value of this setting.
#PPC #PPC (stands for Preserve PC) simply keeps a copy of the current

:PC value to be used later by the :PPC internal symbol.

#PUSH and #PULL will save/restore the value of this setting.
#PROC

#ENDP
Advances the @@ local label counter. Nullifies the contents of the

~procname~ macro placeholder. See also PROC

#ENDP closes the corresponding PROC section. See also ENDP

#PSP #PSP (stands for Preserve SP) simply keeps a copy of the current

:SP value to be used later by the :PSP internal symbol.

The :PSP symbol returns the difference between the then current

:SP and the value saved with this directive. This can be used to de-

allocate just the number of stack bytes that were pushed in between.

This is only meant for use in #SPAUTO mode, which automatically

adjusts the current value of the :SP internal symbol.

#PUSH and #PULL will save/restore the value of this setting.
#RENAME oldname,newname

#REMACRO oldname,newname
Renames a macro from its current (old) name to a new name.

An error message is issued if the old name is not a defined macro,

the new name is a defined macro, or either name is an invalid

symbol name.

#REMACRO is the same as #RENAME except that it does NOT check

if the new name exists. If it exists, there will now be one extra

instance of that macro. Note: The most recently defined macro of

the same name is visible when more than one macro share the same

name. #DROP-ping the macro always drops the visible instance,

making a possible previous instance now visible.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 45

Tip: An example of where #RENAME might be useful:

Say, you have a library (or OS system) macro that is called many

times in your application, but you want to modify that macro’s

behavior just for this one application. Your options are:

[1] Write a new (differently named) macro, and change all calls

from the old macro to new macro. Problem: If some of these calls

are inside shared library code, you can’t change those calls, as it will

affect other applications using those macros, as well. Too much

work, and error prone.

[2] Alter the library macro to include the new behavior. Problem:

Other applications may not like the new behavior.

[3] Use #RENAME in your application to have the old library macro

change name just for this application’s sake. Then, use the original

name to write a brand new compatible macro but with the new

behavior. It is also now possible for the new macro to ‘borrow’ the

functionality of the old macro (by calling it internally as needed), so

the new macro doesn’t necessarily have to repeat the whole

original macro body. This allows for an easy way to extend or

replace any general-purpose library macros for each application,

separately.

Example for #REMACRO that allows front-ending a previous macro

to add code before and after the macro call.

a macro

 #Message Inside original ~0~

 endm

a remacro

 #Message Inside inner ~0~

 #rename ~0~,_{:totalmacrocalls}_

 @@a

 #remacro ~0~,~self~

 #Message Inside inner ~0~

 endm

a remacro

 #Message Inside outer ~0~

 #rename ~0~,_{:totalmacrocalls}_

 @@a

 #remacro ~0~,~self~

 #Message Inside outer ~0~

 endm

 @a

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 46

 #Message -----------------------------

 @a
#S19FLUSH Forces the immediate termination of an S-record line when

encountered, rather than waiting for the record to reach the size

specified by the ïRn command line directive. This directive may be

used to make identification of the end of code blocks easier when

viewing the *.S19 file.
#S19RESET Resets the S19 processor. Any used address ranges will be

forgotten, and the same ranges used again. This directive may be

used to combine multiple normally overlapping S19 files into one.
#S19WRITE [text] Flushes the current S19 record, and then writes the text message

into the S19 file on a line by itself. This directive may be used to

add arbitrary text inside the S19 file, such as comments, special

processing loader directives, etc.
#SIZE symbol[,expr] Assigns the value of the expression to the size attribute of the

specified previously-defined label. If no expression is present, then

the difference between the current location and the label is used

(as if the expression was: *-LABEL) which is the most common use

of this directive. You can access the size attribute at a later time by

using the internal symbol ::symbol (where symbol is the symbol

whose size you want to get.)
#SP [expr]

#SP1 [expr]

#SPAUTO [expr][,expr]

#SPADD [expr]

#SP1 automatically adds one to all SP indexed offsets. It does this

without affecting the current value of the :SP internal symbol.

#SP without any expression cancels #SP1 and #SPAUTO modes

(reverts to default/normal operation).

#SP followed by any expression (including a zero value) sets the

:SP offset to the value of that expression but does not affect the

current #SPAUTO mode.

#SPADD adds a [signed] number to the current value of the :SP

offset (regardless of mode). It does not reset the :SPCHECK

variable, as with #SPAUTO.

When #SP1 is enabled, all SP indexed instructions use the same

(zero-based) offsets as their corresponding X indexed instructions

right after a TSX instruction. This allows using the same [named or

numeric] offsets for both addressing modes to access the same

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 47

memory location(s)!

If the optional signed expression is present, its value will be added,

also. This makes it easier to adjust for any stack depth changes,

such as for subroutines or in-line stack changes.

#SPAUTO (or its shorter alias, #SPA) will automatically adjust the

offset based on the instructions used. All push and pull instructions

(including the extra ones) as well as all AIS instructions will

automatically adjust the offset by as many bytes as required by

each instruction. Use the #SP directive (without any parameter

offset, not even zero) to turn off the #SPAUTO mode and zero

the SP offset (or, use #SPAUTO with the special #OFF#

parameter to turn off the #SPAUTO mode without changing the

current SP offset.)

#SPAUTO takes an optional second argument (any valid constant

expression). If this value is specified, then the assembler (while in

SPAUTO modes) will produce warnings when the stack depth

increases beyond the value of the given expression. This value will

remain active until it is explicitly turned off by using –1 in a

subsequent #SPAUTO directive (e.g., #SPAUTO , - 1). The current

value of this expression you can find in the internal variable
:SPLIMIT

The maximum actual stack depth used will be in the :SPMAX

variable which is reset only when :SPLIMIT is rewritten with a new

value. This allows to check the maximum stack depth for a single

routine, a collection of routines (e.g., in a module), or the whole

application.

Manual alterations of the stack size, however (such as when you

push an extra byte per loop iteration) cannot be automatically

detected as the assembler will not follow your code’s logic. In

those cases, you’ll have to adjust the offset ‘manually’ using

#SPADD and an appropriate offset, like so:

#SPADD LOOPCOUNT- 1

#PUSH and #PULL will save/restore the current setting of all modes

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 48

of this option.

The assembler always starts in plain #SP mode (no offsets).

See also internal symbols :SP and :SP1 and the simulated indexed

modes ,ASP and ,LSP

#SPCHECK #SPCHECK checks the current value of the :SP internal symbol

against the last used #SPAUTO value (found in :SPCHECK internal

symbol), and issues a warning if the two numbers do NOT match,

indicating a possible unbalanced stack situation (assuming correct

placement of the relevant directives).

The current difference between :SP and :SPCHECK is found in

:SPFREE (e.g., use with AIS #:SPFREE)

The warning also shows the number of bytes by which the stack is

off. This can be used as a first-line of defense against unbalanced

stack coding errors, especially in situations where there is heavy

manipulation of the stack, and a visual inspection may prove

confusing. Positive numbers indicate the stack contains so many

extra bytes. Negative numbers indicate the stack is missing so

many bytes.

Hint: If you do not wish to use the #SPAUTO function for a

particular section of code (or anywhere in your program) you can

still temporarily place the #SPAUTO directive at the beginning of a

code section to check, and the #SPCHECK at the end of the same

code section, until you verify there are no related compilation

warnings. Then you can remove the two directives (possibly even

with the use of conditional directives), and continue with other

coding work.

See also #SPAUTO

#X [expr] When #X is enabled (i.e., followed by a non-zero signed offset), all

X indexed instructions will have that offset value automatically

added to them (on top of whatever offset is actually specified with

the instruction). This has a lot of potential uses, such as pointer

adjustments (after TSX), or anytime the same constant needs to be

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 49

added to a series of X-indexed instructions within a block of code.

#PUSH and #PULL will save/restore the current setting of this

option.

The assembler always starts in plain #X mode (no offsets).

See also internal symbol :X and the simulated indexed mode ,AX

#Y [expr] When #Y is enabled (i.e., followed by a non-zero signed offset), all

Y indexed instructions will have that offset value automatically

added to them (on top of whatever offset is actually specified with

the instruction). This has a lot of potential uses, such as pointer

adjustments (after TSY), or anytime the same constant needs to be

added to a series of Y-indexed instructions within a block of code.

#PUSH and #PULL will save/restore the current setting of this

option.

The assembler always starts in plain #Y mode (no offsets).

See also internal symbol :Y and the simulated indexed mode ,AY

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 50

#PAGE Outputs a Form Feed (ASCII 12) character followed by a Carriage

Return (ASCII 13) in the *.LST file just before displaying the line that

contains this directive.
#PUSH Pushes on an internal stack the current segment and the current

settings of the following directives: MAPx, LISTx , CASEx, EXTRAx,

SPACESx, OPTRELx, OPTRTSx, [NO]WARN, TRACEx, MACRO,

@MACRO, MCF, MACROSHOW, MACROHIDE, :PSP, :PPC,

TRACE[ON/OFF], MLISTx , and TABSIZE. Useful in included

files that want to change any of these options without affecting

parent/sibling files. See also #PULL

#PULL Pulls from an internal stack the most recently pushed options.

See also #PUSH

#RAM Activation of the RAM segment. Default starting value is $0000.
#ROM Activation of the ROM segment. Default starting value is $D000.

This is the default segment if none is specified.
#SEGn Activation of the SEGn segment (n is a number from 0 through 9).

Default starting value for all ten segments is $0000.
#TABSIZE n Specifies the field width of tab stops used in the source file. Proper

use of this directive ensures that the *.LST files generated by

ASM11 are formatted in the same way as your source files appear

in your text editor. This directive overrides the setting of the ïTn

command line option at the point in the source file(s) in which it is

encountered.
#TEMP [expr] #TEMP simply assigns any value (possibly the result of an non-

forward expression) to the internal general-purpose :TEMP

variable. If no expression follows #TEMP, :TEMP is zeroed.

:TEMP can be used any time in lieu of defining any ‘helper’ symbol

for intermediate calculations (either inside or outside macros). The

only restriction is that :TEMP always refers to the most recent

#TEMP directive, so it cannot be used to look forward.

Although :TEMP is a single variable, its use is transparent in

relation to macros. In other words, changing :TEMP from within

any macro does not affect the value of :TEMP outside all macros,

or macros above the current level.

Although macros inherit their initial value of :TEMP from their

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 51

higher level (either a caller macro, or normal code), they do not

affect their parent’s :TEMP value, so you can use it without

worrying about side effects from any intermediate macro calls.

:TEMP is also assigned indirectly when used as label with th any of

the following directives/pseudo-ops: NEXT, NEXP, SETN, and #AIS

#TRACEON

#TRACEOFF
#TRACEON enables generation of source-line information in the

*.MAP file for any code found in the body of macros following this

directive. The map info is generated in such a way that while

tracing the debugger will display the actual source of the macro.

This can be used globally (to affect all macro invocations), inside a

specific macro (to debug that one macro), or around a specific

macro invocation (to debug that one macro call.)

#TRACEOFF turns this option off making macros appear as a single

line in the debugger. #TRACEOFF is the default state when

assembly is started.
#VARIABLE addr1 [addr2]

#VARIABLE #OFF#

Maps a location (or range, if addr2 is also supplied) of variable

allocation area (normally in RAM) as valid. Use multiple directives

to specify additional ranges. Any RMB or DS definitions that fall

(fully or partially) outside the given range(s) will produce a warning

(if the - O option is enabled) for each such definition. Addr1 and

addr2 may be specified in any order. The range defined will always

be between the smaller and the higher values.

The special keyword #OFF# removes all current definitions.

See also #MEMORY

#VECTORS Activation of the VECTORS segment. Default starting value is

$FFD6.
#WARN Turns warnings on. Equivalent to the - WRN+ command line option.

See also #NOWARN

#WARNING [text] Similar to the #ERROR directive, but generates an assembler

warning message instead of an error message.
#XRAM Activation of the XRAM segment. Default starting value is $2000.
#XROM Activation of the XROM segment. Default starting value is $8000.
#UNDEF symbol[,symbol]* Undefines one or more symbols. If a symbol is not currently

defined, a warning will be issued (to protect from possible typing

errors).

Careless, or simply wrong use of this directive can lead to multiple

side errors or warnings (please note this is a two-pass assembler).

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 52

If you simply want to redefine the value of a symbol, prefer using

the SET pseudo-op, rather than #UNDEF followed by another symbol

definition.

#UNDEF can be used, for example, to completely remove unrelated

or conflicting conditionals.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 53

Note: [text] in directives and all strings may contain nested expressions enclosed in curly brackets, e.g.

{expr}. The expression may not contain spaces (regardless of the ïSP option state, or #SPACESON directive.

An optional format modifier (case-insensitive) within parentheses after the expression can force the

display in the specified format. (D) for default/decimal, (H) for hex, (S) for signed decimal, (1) thru (4)

(or, thru (9) for the 32-bit versions) for the corresponding number of decimal places after division by 10
n

where n is a number from 1 to 4 (or 9), (X) for expanded, (Fn) for space left filled, and (Zn) for zero left

filled, where n is optional (default is 2) and can range from 1 to 0 (0 meaning 10). Some examples using

this feature:

ROM EQU $F000

#Message ROM is at {ROM}

will display:
ROM is at 61440

Adding a format modifier will have the following effect:

#Message ROM is at {ROM(x)}

will display:
ROM is at 61440 [$F000]

#Message ROM is at {ROM(d)}

will display:
ROM is at 61440

#Message ROM is at {ROM(h)}

will display:
ROM is at $F000

#Message ROM is at {ROM(s)}

will display:
ROM is at - 4096

#Message Clock: {:year} - {:month(z)} - {:date(z)} {:hour(z)}:{:min(z)}:{:sec(z)}

will display something like:
Clock: 2013 - 11- 05 13:00:00

It can also be used in strings, like so:

VERSION equ 101 ;Firmware version as x.xx

MsgVersion fcs óFirmware v{VERSION(2)}ô,LF

is equivalent to

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 54

MsgVersion fcs óFirmware v1.01ô,LF

but it will automatically adjust the MsgVersion string each time the symbol VERSION changes value.

No need to re-adjust all relevant messages manually.

An expression that cannot be evaluated (due to forward references or undefined symbols) will display as

three question marks (???) in directives, but no error or warning message will be issued. When used in

strings, however, errors will be displayed as usual.

To prevent an expression evaluation in directives, enclose the [text] that contains the curly brackets within

quotes.

To prevent an expression evaluation in strings, break the string into two so that both curly brackets are

not part of the same string, e.g.:

instead of fcc ó{Hello}ô which tries to evaluate the symbol Hello use: fcc ó{ó,ôHello}ô.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 55

Internally defined symbols

Some special internal symbols are defined by the assembler. All such symbols begin with a colon (:)

character. Currently, the following internal symbols are defined:

Á :: (without a symbol following) returns the current (dynamically assigned) stack offset. Very

useful mostly in #SPAUTO mode so that you can assign labels to stack contents as they are

created. (Same as 1- :SP in #SP[AUTO] modes, or 0- :SP if in #SP1 [sub-]mode.) Note: If any

push instruction is followed by a label, that label will be SET to the current :: value (must be in

#ExtraOn mode).

Á ::symbol (where symbol is any previously defined symbol) returns the current ‘size’ for the given

symbol. A symbol’s size is determined either automatically (e.g., RMB pseudo-instructions), or

manually via the #SIZE directive.

Á :SP returns the current offset of the #SP or #SP1 directives. This value is the basis for several

other internal symbols.

Á :SPLIMIT returns the currently effective value of the #SPAUTO stack depth check option (i.e., the

optional 2
nd

 parameter of the #SPAUTO directive.) #PUSH/#PULL save/restore this value.

Á :SPMAX returns the maximum used stack depth since the last time :SPLIMIT was explicitly set

(even if to the same value it had already.) You can use this internal variable to find the maximum

stack depth for a single routine, a collection of routines (e.g., a whole module), or even your whole

application’s. Keep in mind, however, that it only counts stack depth in a linear fashion, i.e., without

considering possible subroutine calls, recursion, or other indirect methods of altering the stack, such

as the LDHX #STACKTOP / TXS sequence.

Á :SPX returns :SP - 1 when in #SP[AUTO] modes and :SP - 0 when in #SP1 [sub-]mode. Useful

with #X as in #X :SPX . Alternatively (and preferably), you may use the ,SPX simulated indexed

mode, which does not depend on the :SPX value, and which is actually X-indexed mode but stack-

relative to the most recent TSX instruction, and possible subsequent INX/GETX/GIVE instructions.

(Note: there are many ways to alter the contents of the X index register; the assembler cannot

automatically account for all those possibilities; use #X expr where needed to manually adjust the

offset, and use the plain X- indexed mode). This feature provides a very simple way of creating SP

relative instructions to ,X relative (by simply using ,SPX and TSX anywhere before these

instructions. All offsets are automatically adjusted.)

Á :SPY returns :SP - 1 when in #SP[AUTO] modes and :SP - 0 when in #SP1 [sub-]mode. Useful

with #Y as in #Y :SPY . Alternatively (and preferably), you may use the ,SP Y simulated indexed

mode, which does not depend on the :SP Y value, and which is actually Y-indexed mode but stack-

relative to the most recent TSY instruction, and possible subsequent IN Y/GETY/GIVEY

instructions. (Note: there are many ways to alter the contents of the Y index register; the assembler

cannot automatically account for all those possibilities; use #Y expr where needed to manually

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 56

adjust the offset, and use the plain Y- indexed mode). This feature provides a very simple way of

creating SP relative instructions to , Y relative (by simply using ,SP Y and TSY anywhere before

these instructions. All offsets are automatically adjusted.)

Á :TSX is similar to :SPX but, although relative to the most recent TSX instruction, and possible

subsequent INX/GETX instructions (like :SPX), it disregards possible following stack depth changes,

unlike :SPX . (Note: there are many ways to alter the contents of the X index register; the assembler

cannot automatically account for all those possibilities; use #X expr where needed to manually

adjust the offset, and use the plain X- indexed mode).

Á :TSY is similar to :SPY but, although relative to the most recent TSY instruction, and possible

subsequent INY/GETY instructions (like :SPX), it disregards possible following stack depth changes,

unlike :SP Y. (Note: there are many ways to alter the contents of the Y index register; the assembler

cannot automatically account for all those possibilities; use #Y expr where needed to manually

adjust the offset, and use the plain Y- indexed mode).

Á :SPCHECK returns the actual offset used with the most recent #SPAUTO directive.

Á :SPFREE returns the current stack depth change (same as :SP - :SPCHECK). For example, you

may use it with the AIS instruction to free so many bytes of stack. (The symbol :SP alone will

not work for this purpose – releasing remaining stack bytes – unless #SPAUTO is used with a zero

offset, while :SPFREE works, regardless of the initial offset.)

Á :AIS returns the current stack depth change since the last #AIS directive (when given without any

parameters). For example, you may use it with a new [normally, stack-reducing] GIVEX/GIVEY

instruction to free so many bytes of stack. :AIS is updated automatically after each #AIS directive,

losing whatever previous value was in :AIS , and it can be used to free whatever stack bytes remain

since the last #AIS directive (used like so:, GIVEX #:AIS). #SP, #S PAUTO, and #SP1 reset the

:AIS symbol to zero or the value of the parameter used with the corresponding directive until the

next #AIS directive.

Á :PSP returns the current stack depth change since the last #PSP directive. For example, you may

use it with the AIS instruction to free so many bytes of stack. Unlike :SPFREE which is related to

the automatically updated :SPCHECK during any #SPAUTO directive, :PSP is only updated

manually with the #PSP directive, and can be used locally (eg., around a sub-routine call) to free the

number of stack bytes for only a specific section of code (eg., whatever parameters were pushed on

the stack for use by the sub-routine).

Á :SP1 returns the current offset of the #SP or #SP1 directives (like :SP), but also adds one only if

we’re currently in the #SP1 mode. This value is always the true effective offset for both #SP and

#SP1 modes.

Á :X returns the current offset of the #X directive.

Á :Y returns the current offset of the #Y directive.

Á :YEAR returns the year at assembly time (e.g., 2018) Hint: Use :YEAR\ 100 for two-digit year.

Á :MONTH returns the month at assembly time (e.g., 10)

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 57

Á :DATE returns the date at assembly time (e.g., 7)

Á :HOUR returns the hour at assembly time (e.g., 13)

Á :MI N returns the minute at assembly time (e.g., 0)

Á :SEC returns the second at assembly time (e.g., 0)

Á :CPU returns a number representing the CPU type (6811)

Á :CRC returns the current value of the running user CRC

Á :S19CRC returns the current value of the running S19 CRC.

Á :CYCLES returns the current value of the cycles counter, and then it is reset to zero.

Á :OCYCLES returns the older value of the cycles counter (but does not reset it).

Á :TOTALMACROCALLS returns the current value of the total macro invocations. Use it for display,

or even to restrict macro use (e.g., #IFNZ :TOTALMACROCALLS é #ERROR No macros

allowed for this application é #ENDIF).

Á :MACRONEST returns the current value of the macro (chain) ‘loop level’ regardless if calling the

same, or a different macro (think of it as the ‘nesting level’). A value of zero is returned if used

outside any macros. First level is number 1. Each time the top-level macro is called, the number is

reset to 1. Each time the same or a different macro is called from within the current macro, the

number is incremented by 1. The macro (chain) can also initialize itself during, say, count one.

Á :MACROLOOP (or, simply, :LOOP) is similar to :MACRONEST but it returns the current value of the

macro ‘loop level’ only for the current macro. A value of zero is returned if used outside any

macros. First level is number 1. Each time the macro is called from outside any macros, or from a

different macro, the number is reset to 1. Each time the macro calls itself (by either a chained

macro call, or the MTOP directive), the number is incremented by 1. This can be used as an

automatic loop counter. The macro can also initialize itself during, say, count one. This differs

from :MACRONEST in that chained macro calls will restart this counter for each new macro. This

counter is also reset with a %macro syntax call.

Á :MLOOP is similar to :LOOP but it is only affected by the MDO and MLOOP keywords. First count is

number 1. Each time the MDO keyword is encountered, the number is reset to 1. Each time the

MLOOP keyword is encountered, the number is incremented by 1. This can be used as an

automatic loop counter. This counter is also reset with a %macro syntax call.

Á :MEXIT holds the most recent MEXIT defined value. :MEXIT is reset to zero each time a macro

is (re)entered, but its value can be changed by MEXIT instructions that specify an explicit

expression. This feature can be used to pass back to the higher level any value from inside a

(nested) macro (such as success/error status, the result of some computation, etc.) without using

any label definitions.

Á :MACROINDEX (or :MINDEX) returns the current value of the current macro’s number of

invocations. A value of zero is returned if used outside any macros. First call of each macro is

number 1. If the specific macro is dropped and re-created, the number is reset (it is, afterall, a new

macro). An example use is to create different labels at each invocation (not to be confused with

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 58

automatic $$$ label generation, which assumes values based on :TOTALMACROCALLS and cannot

be guaranteed to take sequential values between consecutive calls of the exact same macro since

other macros may have increased the counter in between), or instruction offsets (e.g., with the

special ad-hoc macro named “?”), etc. This counter is also reset with a %macro syntax call.

Á :INDEX returns the next value of the current macro’s internal user index. A value of zero is

returned if used outside any macros. First use in each macro is number 1. If the specific macro is

dropped and re-created, the number is reset (it is, afterall, a new macro). Its use is similar to

:MACROINDEX but there is a significant difference. :INDEX is only updated each time it is

accessed, regardless of how many times the macro is actually called. So, if used inside a

conditional block of code, it will only be incremented when that part is expanded. Note: Because

of the auto-increment on access, if you want to use the same value more than once in the same

macro invocation, you must first assign the value to some label, and then use the label, instead.

This counter is also reset with a %macro syntax call.

Á :0 to :9 return the length of the text of the corresponding macro parameter. You can use it

alone or along with the ~n.s.l~ parameter placeholder. This can only be used from within a

macro. It is not recognized as valid symbol outside a macro.

Á :DOW returns the day-of-week number at assembly time, from zero (Sunday) to six (Saturday).

Á :PC returns the current program counter (same as *) but can be used even in expressions where

the use of * is ambiguous.

Á :PPC returns the previously saved program counter (see the #PPC directive). It can be used to get

the byte distance between any two points without having to define a symbol just for this. It is also

useful inside frequently called macros; for example, to avoid the use of a macro local label

definition for simple loops (helps keep the symbol table smaller in large applications).

Á :PROC returns the current value of the internal local symbol counter (See PROC and #PROC).

Á :MAXPROC returns the currently maximum value of the internal local symbol counter (See PROC

and #PROC).

Á :LABEL returns the length of the ~label~ placeholder’s content used inside macros.

Á :TEMP returns the current value of this internal user-defined assembly-time variable. (See the

#TEMP directive for more details.)

Á :TEXT returns the length of the current text of the ~text~ macro parameter (only from within

macros.)

Á :LINENO returns the current file line number.

Á :MAXLABEL returns the current value of the maximum label length.

Á :MLINENO returns the current macro line number (only from within macros).

Á :N returns the current macro number of contiguous arguments (only from within macros).

Á :NN returns the current macro number of all arguments (only from within macros).

Á :ANRTS returns the address of the most recent RTS instruction (i.e., always points back).

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 59

Á :ROM, :RAM, etc. All segment directives have a corresponding internal variable that returns

the current value of that segment.

Á : OFFSET returns the current S19 addressing offset from the physical address (see ORG).

Á :WIDTH returns the current width of the console screen. Useful for formatting user messages.

Notes about :cycles :

Á The cycles counter is reset to zero right after it is accessed. To count cycles for a section of code,

you must access :cycles twice, once before the code section to reset its value to zero (if not

already zero from a previous access to :cycles or a #CYCLES directive), and once right after the

code section to get the accumulated cycles.

Á Because of the auto-reset on access, if you need to use the same value in more than one place at

a time (e.g., code and #MESSAGE directive), you must assign it to a label first, then use the label.

Á The obvious advantage is that if you alter code as in the example loop below (e.g., by adding

conditional early escape code inside the loop), it will still be timed correctly without requiring a

manual adjustment of the delay constant. Another advantage is that conditionally enabled code

will be accounted for correctly in all cases, again without requiring a manual recalculation for each

conditional case.

Á Example use of :cycles that automatically calculates the appropriate delay constant:

 #Cycles ; reset cycles counter

Delay10ms pshx

 ldx #10*BUS_KHZ - ?ExtraCycles/?LoopCycles

?ExtraCycles equ :cycles ; grab counter (and reset)

?Delay.Loop dex

 bne ?Delay.Loop

?LoopCycles equ :cycles ; grab counter (and reset)

 pulx

 rts

?ExtraCycles set ?ExtraCycles+ :cycles

(SET instead of EQU allows re-using symbols, so you can use it to accumulate related cycles.)

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 60

Example assembly code for calculating user CRC

;***

; Purpose: Calculate the same user CRC as that produced by ASM11

; Input : X - > First byte of block

; : Y - > Last byte of block

; : D = Initial/Previous CRC

; Output : D = updated CRC

; Note(s): Call repeatedly for different address ranges, if skipping sections

; Call : ldd #CRC

; : ldx #StartAddress

; : ldy #EndAddress

; : jsr GetAsmCRC

? set 0

?StartAddress next ?,2

?EndAddress next ?,2

?CRC next ?,2

GetAsmCRC pshx

 psh y

 pshd ;CRC

 pshy ;ending address

 pshx ;starting address

 tsy ;Y - > stack fr ame

?GetAsmCRC.Loop cmpx ?EndAddress,y

 bhi ?GetAsmCRC.Exit

 sta COPRST ;in case of many iterations

 lda ,x

 beq ?GetAsmCRC.Next

 cmpa #$FF

 beq ?GetAsmCRC.Next

 ldb ?StartAddress+1,y

 mul ;low address with data byte

 addd ?CRC,y

 std ?CRC,y

 lda ,x

 ldb ?StartAddress,y

 mul ;high address with data byte

 addb ?CRC,y

 stb ?CRC,y

?GetAsmCRC.Next inx

 stx ?StartAddress,y

 bra ?GetAsmCRC.Loop

?GetAsmCRC.Exit pulx

 puly

 puld

 puly

 pulx

 rts

Example coding for skipping CRC calculation for volatile sections

?crc set :crc ;use SET, not EQU

 ;CODE/DATA TO SKIP FROM CRC CALCULATION HERE

 #CRC ?crc

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 61

Expression Operators and Other Special Characters

Recognized by Asm11

¶ Expressions are evaluated in the order they are written (left to right).

All operators have equal precedence.

¶ Avoid inserting spaces between values and operators (unless using -SP+ switch and semicolon

beginning comments).

Operator Description

+ Addition
- Subtraction

When used as a unary operator, the 2’s complement of the value to the right is

returned.
* Multiplication

Can also be used to represent the current location counter.
/ Integer Division (ignores remainder)
\ Modulus (remainder of integer division)
= ‘Equal to’ comparison for the $IF directive.

<> ‘Not equal to’ comparison for the $IF directive.
>= ‘Greater than or equal to’ comparison for the $IF directive.
> Shift right – operand to the left is shifted right by the count to the right.

Also used to specify extended addressing mode.

‘Greater than’ comparison for the $IF directive.
<= ‘Less than or equal to’ comparison for the $IF directive.
< Shift left – operand to the left is shifted left by the count to the right.

Also used to specify direct addressing mode.

‘Less than’ comparison for the $IF directive.
& Bitwise AND
| Bitwise OR
^ Bitwise XOR (exclusive OR)
~ Swap high and low bytes (unary): ~$1234 = $3412

Useful for converting word values from big-endian to little-endian or the inverse.
[[Extract low 16 bits (unary): [[$123456 = $3456

]] Extract high 16 bits (unary):]]$123456 = $0012

[Extract low 8 bits (unary): [$1234 = $34

] Extract high 8 bits (unary):]$1234 = $12

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 62

$ Interpret numeric constant that follows as a hexadecimal number.

Can also be used to represent the current location counter.
% Interpret numeric constant that follows as a binary number

¡ ` ± Any one of these characters (single, back, or double-quote) may be used to enclose a

string or character entity. The character used at the start of the string must be used to

end it.
Specifies immediate addressing mode
@ Specifies direct addressing mode (same as «<»)

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 63

ASM11 Extended Instruction Set

The instructions listed below are not actually new instructions, rather, internal macros that generate one

or more 68HC11 CPU instructions. These instructions are only recognized if the extended instruction set

option is enabled (- X+ command line option or #EXTRAON processing directive) , and are used just like

normal instructions, but NOT like user-defined macros.

Mnemonic/Syntax Description

AIX #word Add Immediate X the 16-bit value #word (signed or unsigned). Equivalent to

XGDX / ADDD #word / XGDX

AIY #word Add Immediate Y the 16-bit value #word (signed or unsigned). Equivalent to

XGDY / ADDD #word / XGDY

LDA operand Same as: LDAA operand

LDB operand Same as: LDAB operand

STA operand Same as: STAA operand

STB operand Same as: STAB operand

ORA operand Same as: ORAA operand

ORB operand Same as: ORAB operand

PSHD Push D: PSHB / PSHA

PULD Pull D: PULA / PULB

CMPD operand Same as: CPD operand

CMPX operand Same as: CPX operand

CMPY operand Same as: CPY operand

CLRD Clear D: CLRA / CLRB

CLRX Clear X: LDX #0

CLRY Clear Y: LDY #0

COMD 1’s Complement D: COMA / COMB

NEGD 2’s Complement D: COMA / COMB / ADDD #1

XGAB Exchange A and B: PSHA / TBA / PULB

ROLD Rotate Left D: ROLB / ROLA

RORD Rotate Right D: RORA / RORB

INCD Increment D: ADDD #1

INCX Increment X: INX

INCY Increment Y: INY

DECD Decrement D: SUBD #1

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 64

DECX Decrement X: DEX

DECY Decrement Y: DEY

LBRA addr16 Long relative branch: (22 bytes/69 cycles)

Warning! Generates considerable code, use with care
LBSR addr16 Long relative subroutine call: (32 bytes/92 cycles)

Warning! Generates considerable code, use with care
GETX #word Get #word bytes of stack storage pointed to by X for temporary use.

Equivalent to TSX / XGDX / SUBD #word / XGDX / TXS

GETY #word Get #word bytes of stack storage pointed to by Y for temporary use.

Equivalent to TSY / XGDY / SUBD #word / XGDY / TYS

GIVEX #word Give (back) #word bytes of stack storage pointed to by X.

Equivalent to TSX / XGDX / ADDD #word / XGDX / TXS

GIVEY #word Give (back) #word bytes of stack storage pointed to by Y.

Equivalent to TSY / XGDY / ADDD #word / XGDY / TYS

JCC addr16 Jump equivalent to BCC (BCS $+5 followed by JMP addr16)

JCS addr16 Jump equivalent to BCS (BCC $+5 followed by JMP addr16)

JEQ addr16 Jump equivalent to BEQ (BNE $+5 followed by JMP addr16)

JGE addr16 Jump equivalent to BGE (BLT $+5 followed by JMP addr16)

JGT addr16 Jump equivalent to BGT (BLE $+5 followed by JMP addr16)

JHI addr16 Jump equivalent to BHI (BLS $+5 followed by JMP addr16)

JHS addr16 Jump equivalent to BHS (BLO $+5 followed by JMP addr16)

JLE addr16 Jump equivalent to BLE (BGT $+5 followed by JMP addr16)

JLO addr16 Jump equivalent to BLO (BHS $+5 followed by JMP addr16)

JLS addr16 Jump equivalent to BLS (BHI $+5 followed by JMP addr16)

JLT addr16 Jump equivalent to BLT (BGE $+5 followed by JMP addr16)

JMI addr16 Jump equivalent to BMI (BPL $+5 followed by JMP addr16)

JNE addr16 Jump equivalent to BNE (BEQ $+5 followed by JMP addr16)

JPL addr16 Jump equivalent to BPL (BMI $+5 followed by JMP addr16)

JVC addr16 Jump equivalent to BVC (BVS $+5 followed by JMP addr16)

JVS addr16 Jump equivalent to BVS (BVC $+5 followed by JMP addr16)

CLS Clear S flag: PSHA / TPA / ANDA #$7F / TAP / PULA

CLX Clear X flag: PSHA / TPA / ANDA #$BF / TAP / PULA

PULL Same as: PULD / PULX / PULY

PUSH Same as: PSHY / PSHX / PSHD

SES Set S flag: PSHA / TPA / ORAA #$80 / TAP / PULA

SEX Sign extend B to A: CLRA / TSTB / BPL ? / COMA / ?

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 65

WAIT Enter WAIT mode: CLI / WAI

OS byteval Operating system call: SWI / DB byt eval

OSW wordval Operating system call: SWI / DW wordval

XGXY Exchange X and Y: XGDX / XGDY / XGDX

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 66

ASM11-generated Error and Warning Messages

This section provides the lists of error and warning messages.

Errors inform the user about problems that prevent the assembler from producing usable code. If there

is even a single error during assembly, no files will be created (except for the ERR file, if one was

requested).

Warnings inform the user about problems that do not prevent the assembler from producing usable code

but the code produced may not be what was intended, or it may be inefficient. A program that has

warnings may be totally correct and run as expected.

Errors and warnings that begin with ‘USER:’ are generated by #ERROR and #WARNING directives,

respectively. The source code author decides their meaning and importance.

In the lists below, what’s enclosed in angle brackets (< and >) is a ‘variable’ part of the message. That is,

it is different depending on the source line to which the error or warning refers.

The order the messages appear below is random. Some messages have similar meanings; they simply

result from different checks of the assembler.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 67

E R R O R S

1. Invalid binary number

The string following the % sign is not made up of zeros and/or ones.

2. Binary number is longer than 16 bits

A binary number may have no more than sixteen significant digits. Leading zeros are ignored.

3. "<SYMBOL>" not yet defined, forward refs not allowed

RMB and DS directives may not refer to forward defined symbols. You must define the symbol(s) used in

advance.

4. Bad <MODE> instruction/operand "<OPCODE>

<OPERAND>

The instruction and operand addressing mode combination is not a valid one, or you have turned the -X

option (EXTRAx directive) off. For example, TST #4 will show «Bad IMMEDIATE instruction/operand

"TST 4 "» because although TST is a valid instruction, it does not have an immediate addressing mode

option.

5. Could not close MAP file

For some reason, the MAP file could not be closed. Possibly some disk problems (check available space,

etc.) If you can’t figure out what’s wrong and still must assemble, turn off the MAP with the - M-

option.

6. Could not close SYM file

For some reason, the SYM file could not be closed. Possibly some disk problems (check available space,

etc.) If you can’t figure out what’s wrong and still must assemble, turn off the SYM with the - S-

option.

7. Could not create MAP file <FILEPATH>

For some reason, the MAP file could not be created. Possibly some disk problems (check available space,

etc.) If a MAP file of the same name already exists it probably has a read-only attribute or is somehow

locked by the system.

8. Could not create SYM file <FILEPATH>

For some reason, the SYM file could not be created. Possibly some disk problems (check available space,

etc.) If a SYM file of the same name already exists it probably has a read-only attribute or is somehow

locked by the system.

9. Expression error

Something is wrong with the attempted expression, or an expression is altogether missing.

10. Invalid argument for DB directive

The value or expression supplied is not correct.

11. Invalid argument for EQU/EXP directive

The value or expression supplied is not correct.

12. Invalid first argument

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 68

The first value or expression supplied is not correct.

13. Invalid second argument

The second value or expression supplied is not correct.

14. Missing value between commas

Two or more commas without a value in between.

15. Possibly duplicate symbol "<SYMBOL>"

The symbol shown has already been defined. The word ‘possibly’ suggests that a symbol may have been

truncated to 19 characters, and thus not appear duplicate to the user, only to the assembler. It also

suggests that the original may have been written for case-sensitive assembly but you turned the

option off.

16. Repeater value is in valid

The repeater value (the : n part of the opcode) is a positive integer number.

17. Symbol "<SYMBOL>" contains invalid character(s)

The symbol shown contains characters that are used in special ways and, therefore, cannot be part of a

symbol because they will cause ambiguities. For example, a quote within a symbol is not allowed.

18. Undefined symbol "<SYMBOL>" or bad number

The string shown is either a symbol that hasn’t been defined at all, or it is a number that has some error,

for example: $ABCH and $FFFFF are not valid hex numbers. The first contains an invalid character

while the second is greater than 16 significant bits ($FFFF).

19. USER: <USER TEXT>

This is a user generated error via the #ERROR directive.

20. Comma not expected

A comma was found in an unexpected position within the operand. Possibly using more arguments than

required.

21. Syntax error

Some symbol is confusing the assembler. For example, FCB #$FF will give a syntax error because the #

indicates immediate addressing mode which makes no sense for an FCB directive (the correct is FCB

$FF).

22. Empty string not allowed

An empty string (two quotes next to each other) is not allowed because there is no value that can be

generated from it.

23. Could not open include file <FILEPATH>

The [path and] file shown could not be located or opened. If the file exists, it may be locked by some

other program (under Windows, the file could be loaded in an editor).

24. ELSE without previous Ifxxx

An #ELSE directive was encountered that does not match any unmatched #IF directive.

25. ENDIF without previous Ifxxx

An #ENDIF directive was encountered that does not match any unmatched #IF directive.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 69

26. Forward references not allowed

The #MEMORY/#VARIABLE and other directives do not accept forward references.

27. Incomplete argument for Bit Instruc tion (commas?)

BSET, BCLR, BRSET, and BRCLR require commas between each part of the operand. You have either left

the commas out or forgotten to supply all the parts of the operand. Assembling code written for

Mot’s AS11 will produce a lot of these.

28. Inva lid expression(s) and/or comparator

The expression or comparator used in the #IF directive is incorrect.

29. Missing branch address

BRSET and BRCLR require a target address for branching to but one was not supplied. The branch

target is the last part of the operand and it can be any valid expression.

30. Missing INCLUDE filename

An #INCLUDE directive was supplied without any [path and] filename.

31. Missing required first address

A #MEMORY/#VARIABLE directive was encountered without any value or expression.

32. Repeater value out of range (1 -32767)

The repeater value (the :n part of the opcode) must be from 1 to 32767.

33. Required string delimiter not found

You have supplied only one quote to a string, or the string is inappropriately separated from the previous

or next operand. For example: ôABCôCR lacks a comma between the quote and the CR symbol. So,

the found string ACBôCR is invalid.

34. Symbol "<SYMBOL>" does not start with A..Z, . or _

All symbols must start with one of the above characters. (Local symbols start with a ?)

35. Symbol "<SYMBOL>" is reserved for indexing modes

You have used a symbol named X or Y. These names are not allowed because they cause ambiguities

with the X and Y registers in the various indexed mode instructions.

36. Too many include files. Maximum allowe d is 99

The maximum number of INCLUDE files is 99 (regardless of nesting level). You have gone over this

number. Possible solution: Combine related files together as required. Keep in mind that although the

assembler allows this many files to be included, a lot of programs cannot handle these many files in

the MAP files.

37. Division by zero

The expression used contains a division by zero after the / operator.

38. MOD division by zero

The expression used contains a division by zero after the \ operator.

39. "<SYMBOL>" is too far back [<VALUE>], use jumps

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 70

The target of a branch instruction is too far back by as many bytes as shown. Either get it closer to the

target, or use a jump instead. Some instructions, like BRCLR or BRSET do not have an equivalent

jump so you must use an intermediate ‘jump hook’ instead.

40. "<SYMBOL>" is too far forward [<VALUE>], use jumps

The target of a branch instruction is too far forward by as many bytes as shown. Either get it closer to the

target, or use a jump instead. Some instructions, like BRCLR or BRSET do not have an equivalent

jump so you must use an intermediate ‘jump hook’ instead, i.e., branch to a nearby JMP instruction

that jumps to the desired destination.

41. Invalid argument for DW or FDB directive

The value or expression supplied is not correct.

42. Invalid argument for ORG directive

The value or expression supplied is not correct.

43. Invalid argument for RMB or DS directive

The value or expression supplied is not correct.

44. Invalid argument for END directive

The value or expression supplied is not correct.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 71

W A R N I N G S

48. Direct mode wasn't used (forward reference?)

Automatic Direct Mode detection requires that any symbol(s) used be defined in advance. You should

either define the referenced symbol(s) earlier in your code, or use the Direct Mode Override (<) to

force the assembler to use Direct Addressing Mode.

49. Label on left side of END line ignored

The END directive does not take a label. If one is used it will be ignored (it will not be defined).

50. Label on left side of ORG line ignor ed

The ORG directive does not take a label. If one is used it will be ignored (it will not be defined).

51. Trailing comma ignored

A multiple-parameter pseudo-instruction was used (such as FCB and DW) and a comma was found at the

end of the parameter list. This may indicate both commas and spaces separate the list. You must

either remove the spaces or assemble with #SPACESON (or the - SP+ option).

52. Violation of MEMORY directive at address $<VALUE>

53. Violation of VARIABLE directive at/near $<VALUE>

ASM11 has produced code and/or data that falls outside any address ranges defined via the #MEMORY or

#VARIABLE directive, respectively. You must either add more #MEMORY/#VARIABLE directives to

cover the offending range or move your code/data elsewhere (using appropriate segment and/or ORG

statements).

54. EQU/EXPs require a label, ignoring line

An EQU (or EXP) by definition is meant to assign a value to a symbol but no symbol name was supplied.

Using a repeater value in an EQU will also produce this warning for each repetition of the statement

except the first one. You should NOT use repeaters with EQU.

55. Forward references are always FALSE

Conditional directives other than #IFDEF and #IFNDEF produce this warning if the symbol(s) referenced

have not yet been defined. In this case, the conditional evaluates to false, and if there is an #ELSE

part, it is taken.

56. String is too long, only first 8 or 16 bits used

8-bit and 16-bit instructions (such as LDA and LDD) cannot accept a constant string value of more than 8

or 16 bits, accordingly. The longer string encountered is truncated to the first two characters before

being used. If an 8-bit operand is expected, you will also get a warning about using a 16-bit value with

an 8-bit operand.

57. S19 overlap at address $<VALUE>

The code/data of the shown line overlaps an already occupied memory location at the address shown.

The warning appears at code/data that causes the first and consequent overlaps but the problem

could be with the original code/data that occupied this address. The assembler has no way of knowing

your intentions!

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 72

58. RMB overlap at address $<VALUE>

The variable of the shown line overlaps an already defined variable at the address shown. The warning

appears at variables that cause the first and consequent overlaps but the problem could be with the

original variable that was defined at this address. The assembler has no way of knowing your

intentions!

59. Instruction TEST is only valid in SPECIAL TEST MODE

The instruction TEST is only defined when running the 68HC11 in special test mode. This warning is

generated just in case you meant to say TST and typed TEST by mistake.

60. Extra operand found ignored

In a BCLR/BSET you have supplied a branch address. Depending on what you intended to do, either

change the instruction to BRCLR/BRSET or remove the last operand.

61. No ending string delimiter found

The last string quote is missing. ASM11 did its best to produce a value for you but it may not be the one

you wanted. For example: «LDA #ôa» will produce this warning but the value used will be correct,

while «LDA #ôa ;comment» will produce a wrong value (the space after the a because the string ‘a ’

is a 16-bit value downsize to an 8-bit value, you will get a warning about this also).

62. Operand is larger than 16 bits, using low 16 -bits

The operand is greater than 16 bits but the instruction can only accept a 16-bit operand. The lower word

was used.

63. Operand is larger than 8 bits, using low 8 -bits

The operand is greater than 8 bits but the instruction can only accept an 8-bit operand. The lower byte

was used.

64. Possible memory wraparound at address $<VALUE> (<DEC VALUE>)

It seems like you have reached the end of memory ($FFFF) and caused the Program Counter to wrap

around to zero. In some situations this may be intentional. Using RMB 2 (rather than FDB or DW) in

the vector for RESET will also give this warning but it should be ignored. The address shown is the

beginning address of the [pseudo-] instruction that caused the wraparound.

65. A JUMP was used when a BRANCH would also work

You could have used a Branch instead of a Jump. This will make your code one byte shorter for each

warning. Controlled by the -REL (OPTRELxx) option.

66. Attempting operation with missing first operand

An operation was attempted without an operand before the operator. For example /3 (divide by 3) is

missing the dividend.

67. JSR/BSR followed by unlabeled RTS => JMP/BRA

You could safely replace the sequence JSR/RTS or BSR/RTS to a single JMP or BRA, accordingly. The

code will remain equivalent but you will gain a byte of memory, two bytes of stack space, and also

make it a little faster. It will, however, make your source-code less user-friendly and a bit harder to

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 73

follow. It should probably be done only when speed if very important or if you’re running out of space

and must save every byte you can. WARNING: In certain situations, the code is dependent on the

return address pushed on the stack by a JSR or BSR instruction. In those cases, do NOT replace with

JMP/BRA because the code will not run correctly. It is assumed you know the code you’re working on.

Controlled by the -RTS (OPTRTSxx) option.

68. No ORG (RAM:$0000 ROM:$D000 DATA:$B600 VECTORS:$FFD6)

ASM11 started producing code/data without having been told explicitly where to put it. A segment

directive may have been used, however, with its default value. NOTE: You will only get this warning

once no matter how many segments you are using. This means that you may be required to add

ORGs for each segment or else the default values will be used.

69. Phasing on <SYMBOL> (PASS1: $<VALUE>, PASS2: $<VALUE>')

The symbol shown was defined two or more times using different values. The values given may help you

determine the type of the problem more quickly, i.e., whether it is a duplicate label with the same

purpose or a completely random use of the same symbol name. The assembler will attempt to use the

last (most current) value for this symbol.

70. TABSIZE must be a positive integer number, not changed

The TABSIZE directive requires a positive integer, and one wasn’t supplied. The current tab size was not

altered.

71. Unrecognized directive "<DIRECTIVE>" ignored

Something that looks like a directive (i.e., begins with # or $ and appears first in a line after the white-

space) was encountered but it wasn’t a valid one. Check spelling. If spelling seems correct, you may

be assembling someone else’s code written for a later version of ASM11 that supports additional

directives your version doesn’t understand.

72. USER: <USER TEXT>

This is a user generated warning via the #WARNING directive

73. Branch ing to next instruction is needless

You are using a branch instruction (other than BSR) to send control to the immediately following

instruction. This is the default action of the CPU, so this instruction is not required. Controlled by the

-REL (OPTRELxx) option.

74. Jumping to next instruction is needless

You are using a Jxx instruction (other than JSR) to send control to the immediately following instruction.

This is the default action of the CPU, so this instruction is not required. Controlled by the -REL

(OPTRELxx) option.
75. <òSymbolò> symbol size truncated

 Automatically generated symbols (e.g., PROC-local @@ and macro-local $$$ containing symbols) have

expanded to a size of more than 19 characters, and this may cause problems with “duplicate symbol”

errors. To correct, or avoid this problem, use shorter local symbol names (say, no more than ten

characters).

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 74

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 75

ASM11’s Miscellaneous Features

Repeaters

Each opcode or pseudo-opcode may be suffixed by a colon [:] and a positive integer or expression

evaluating to a number between 1 and 32767. This is referred to as the <repeater value>. Some

examples:

 LSRA:4 ;Move high nibble to low

 FCB:256 0 ;Create a table of 256 zeros

 INS:4 ;De - allocate two words from stack

Segments

Eight special directives allow you to use segments in your programs. Segments are useful mostly in

conjunction with the use of INCLUDE files. Since often it is not possible to know the current memory

allocation for variables and code when inside a general-purpose INCLUDE file, segments help overcome

this (and other problems) with ease.

Also, we often want to have our code and data (strings, tables, etc.) grouped in a different way in our

source-code than the resulting S19 (object). Segments again give us the ability to have related code,

variables, and data together in the source but separated into distinct memory areas in the object file.

When using segments, it is common to have a single ORG statement for each of the segments, near the

beginning of the program. Thereafter, each time we need to «jump» to a different memory

segment/area, we use the relevant segment directive.

Although the eight segments are named #RAM, #ROM, #EEPROM, #XRAM, #XROM, #DATA, #SEGn, and

#VECTORS their use is identical (except for the initial default values) and they are interchangeable. Use

of segments is optional. If segments aren’t used, you are always in the default #ROM segment (which

explains why code assembles beginning at $D000).

Local Symbols

All symbols that begin with a question mark [?] are considered to be local. Local symbols are local on a

per-file basis. Each INCLUDE file (as well as the main file) can have its own locals that will not interfere

with similarly named symbols of the remaining participating files. This has two advantages: First, symbols

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 76

can be re-used in another INCLUDE file in a completely different way. Second, local symbols are not

visible outside the file that contains them. This last benefit makes it possible to write quite complex

INCLUDE files while making only the global variables and subroutine entry labels visible to the outside.

Note: You can also have procedure-local symbols. See the #PROC and PROC directives for details.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 77

Marking big blocks as comments

#IFDEF without any expression following will always evaluate to False. This can be used to mark out a

large portion of defunct code or comments. Simply «wrap» those lines within #IFDEF and #ENDIF

directives. This saves you the trouble to individually mark each line as comment, e.g.,

#IFDEF

This is a block of comments explaining all the little details of this great assembly language program…

Blah, blah, blah...

#ENDIF

The only drawback is that the listing file will not include this section. In some cases this is desirable, in

others it isn’t.

Creating ‘menus’ of possible -D option values

ASM11 - Dxxx [[- Dxxx]...] is used to pass up to ten symbols to the program for conditional

assembly. Here’s a tip for creating ‘menus’ of possible symbols to use with the -D option, so you don’t

have to remember them. An example follows:

#ifdef ?

#message **

#message * Choice of run - time conditional symbols

#message **

#message * DEBUG: Turns on debugging code

#message * E2: Target is M C68HC811E2

#message * E9: Target is MC68HC711E9

#message **

#fatal Run ASM11 - Dx (where x is any of the above)

#endif

The command ASM11 - D? PROGNAME.ASM will display the above ‘menu’ of possible -D values and

terminate assembly. If you make it a habit of doing this in all your programs, then at any time you’re not

sure which conditional(s) to use, simply try assembling with the -D? option and you will get help. (A

question mark is the smallest possible local symbol you can define. It is a perfect candidate for this job

as it is easy to remember because it’s like asking for help, and also because it is only visible in the main

file. You could, of course, use any other symbol name you like.)

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 78

Using -Dx with specific values

You may also assign a specific value to a symbol defined at the command-line. This makes it possible,

among other things, to assemble a program at different locations on the fly. For example, the following

program:

;SAMPLE.ASM

#ifndef ROM ;neede d to avoid çDuplicate symbol..è errors

ROM equ $F800 ;Default ROM location

#endif

 ORG ROM

Start lds #$FF ;the program begins here

 ... ;rest of program is left to imagination

 bra * ;the program ends here

will be assembled at $F800 with the command ASM11 SAMPLE but you could also assemble with a

command similar to this: ASM11 SAMPLE - DROM:$D000 to move ROM to a different location at

assembly time.

As another example, you could declare an array where you define the dimension during assembly. No

need to edit the source.

;SAMPLE.ASM

#ifndef ARRAYSIZE ;needed to avoid çDuplicate symbol..è errors

ARRAYSIZE equ 10 ;Default size for array

#endif

#if AR RAYSIZE < 2 ;check for minimum size allowed

#error ARRAYSIZE must be at least 2

#endif

 ORG RAM

Status RMB ARRAYSIZE

Pointer RMB ARRAYSIZE*2

 ...

 ORG ROM

Start lds #$FF ;the program begins here

 ... ;rest of program is left to imagination

 bra * ;the program ends here

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 79

Getting rid of the «No ORG...» warning

If you are annoyed by the «No ORG...» warning that shows up whenever the assembler attempts to

produce code or data without first having encountered an ORG statement, here’s how to turn it off

without actually specifying a fixed origin.

Somewhere before any code or data, and regardless of the current segment, use the pseudo-instruction:
org *

This is a «No Operation» ORG statement because it will simply use the current location counter for the

ORG. It effectively does nothing. It will, however, set the appropriate internal flag that tells the assembler

an ORG has been used and, thus, no warning!

Tips on using the MEMORY directive

The MEMORY directive is generally very useful for any program. It could help you save precious

debugging time by alerting you whenever you accidentally put code and/or data where there is no real or

available memory. The best place to use this directive is the same include file that defines the particulars

of a specific MCU or project. And, assuming you always INCLUDE one such file in every program you

write, you can forget about it.

Another use for the memory directive is to help you write a program that does not necessarily reside in

specific memory locations but, rather, it occupies no more than so many bytes. For example, you’re

writing a small program that must be no more than 100 bytes long. Here’s how to set the MEMORY

directive to warn you should you go over this limit:

Start lds #$FF ;the program b egins here

 ... ;rest of program is left to imagination

 bra * ;the program ends here

#memory Start Start+100 - 1 ;allowed range = Start to 100 bytes later

If while writing your program you begin getting MEMORY Violation warnings, you’ll know you have

reached (actually, gone beyond) the allowed limit. You must cut down the size of your code until the

warning disappears.

Linux/Win32 version addendum

The DOS/Win and Linux versions are practically identical. This document covers the DOS/Win version.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 80

A few differences with the Linux or Win32 versions are listed below:

The different memory models used with Windows and Linux allow for a far greater number of total

symbol definitions. If while using the DOS version you get “heap memory” issues, try using the Win

version, instead.

Standard error redirection does not work. For Linux all output (not just the errors) is redirected, but this

may not be in a very readable format. Please use only the –E option to have ERR files created.

Beginning with v2.00, the Win32 version allows wildcards on the command line for matching multiple

assembly language filenames. The Linux version uses standard Linux syntax for multiple filenames. For

either version, filenames are not limited to the DOS 8.3 format. The #INCLUDE directives within the source

code may also specify long filenames. Spaces within long filenames are currently not possible.

For the Win32 or Linux version, you must keep the included asm11.cfg in the same directory as the

asm11 binary (for example, ~/bin for Linux or C:\Utils for Win32, etc.). Any time you change options and

save them (with the –W option) a new asm11.cfg file will be created in the current directory (or updated if

it already exists). If you want to make this new configuration the current directory project’s default, leave

the .cfg file in that directory, and run asm11 from there.

In case you also want to make this .cfg file the new global default, “mv” (Linux) or “move” (Win32) it to

the ~/bin or other directory where your asm11 binary is, and anytime a local asm11.cfg isn’t found, the

global one will be used instead.

Another difference for the Linux version is that filenames are case-sensitive. But, to ease porting from

DOS/Win, if a file (e.g., #INCLUDE) is not found, it will be searched for again as “all lowercase” and, if not

found a second time, it will be searched for once more as “all uppercase.” This makes it easier to transfer

files from DOS/Win to Linux and not have to rename them, or do so but not have to also change the

source code.

These are pretty much the only differences in behavior.

Assembly language source code syntax is identical for all platform versions, except where noted

otherwise.

ASM11 v9.78, October 7, 2018, Copyright © 1998-2018 by Tony G. Papadimitriou <tonyp@acm.org> 81

Where to get ASM11

http://www.aspisys.com/asm11.htm

Look for the filename ASM11_84.ZIP where _ maybe replaced with a letter (eg.ASM11D84.ZIP). This is the

last fully FREEWARE version. This version will remain FREEWARE and available for public download for

good.

Later versions (beginning with 1.85), however, are no longer FREEWARE but will be available for free only

for private/non-commercial use.

